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Abgtract: In this paper we examine whether empirical mettea replace bootstrapping in intermittent demandkst
control based on simulation. Thus, we generatécatidemand data with 30; 50 and 70 % of zero a@edperiods and
simulate reorder point/fixed order quantity invemtoontrol policy using past stock movement simalagnd the local
search to obtain the optimal trade-off betweenihgldnd ordering costs and the required fill ratedrder lead time 2;
6; 12 and 18 periods. The outputs from simulatiomeeiments prove that empirical method outperfobmststrapping
in term of the consumption of computational timeilevimaintaining similar ability to overestimate deame demand.
Thus, empirical method can become a suitable sutestdf bootstrapping in the local search. Morepitecan be
successfully used to generate an initial reordertpoa more on a one-way neighbourhood sear@mted optimization.
As empirical method copes both with theoretical angpirical demand distributions and does not regaideciding on
number of sampling runs, an optimization of smaajléonstants based on a selection of an appropgateacy metric,
an adoption of a demand classification schemesdata aggregation it is well predetermined to bezam important
part of a simulation-optimization software solutforusing on sporadic demand inventory controhngé scale real life
tasks.

1 Introduction must be integrated when dealing with this kind efnénd

One of the most important tasks in supply chaiRattern. Inthe literature, parametric time sefdeecasting
management is inventory control. By effectively mging based on single exponential smoothing (SES) isideres
inventory such that total cost of ownership is kepta tO represent a mainstream approach [6]. It requices
minimum, the best inventory control techniques aom €stimate mean and variance of lead time demandhelth
lower supply chain costs. Today's market competitass Of a time-series forecasting method and subsequasd
is largely determined by a company's capacity toaga these characteristics as an input to stock manageme
the difficulties of cutting expenses and lead timraising  usually aimed at reaching the trade-off betweearsice
customer satisfaction standards, and enhancinguprod!/evel and inventory costs [7]. Time series foreicgst
quality [1]. The challenge of inventory managemiento  techniques are widely used in practice because ahey
maintain a sufficient supply of a given good tdsfgtan Straightforward and simple to use. They mostly refy
anticipated demand pattern while finding a faideaff historical data and make little effort to determitie
between the expense of keeping the thing in stodklae ~ factors driving the need for demanded items byuidicig
potential consequences of running out [2]. contextual information (e.g., expert assessmenmtsjyat

Intermittent demand, characterized by sporadic demaattributes, maintenance information). As a reshity can
arrivals with varying sizes and frequent periodszefo be easily automated using data that is readilylavai in
demand, poses a significant challenge in forecgstimd ERP systems and take less work to acquire. Howéver,
stock control [3]. Intermittent demand is a premale Major drawbacks of the parametric techniques reptesn
phenomenon in various industries. Sectors like ggsc assumption on a standard demand distribution asadl al
industries, aerospace, automotive, IT, and thetanjli Perceiving demand forecasting and inventory cortirdle
often have a significant portion of their inventorglue two separated stages [8]. o
attributed to intermittent demand items, partidylan That leads to the development of alternative daten
service and repair parts inventories [4]. Additibnathe approaches including mainly bootstrapping [9], etoal
after-sale industry heavily relies on items witteimittent method [10] and most recently the applications eiral
demands, underscoring their importance in posssalgetworks [11]. As all these non-parametric appreaato
service [5]. not assume the order lead time demand to follow a

To guarantee successful and economical operatioﬂgrticmar distribution they are suitable for apptions in
throughout the supply chain, a variety of optimimat demand forecasting of items with quite complicaded!
approaches, technologies, and risk management nesasintriguing patterns. On the other hand these ajopresstill
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separate estimating order lead time demand frosmnitovy ~ whether in the overestimating order lead time deiran
optimization not taking into account a calculatiof replacing bootstrapping with empirical method (B} a
economic order quantity. Moreover, time consumptmn potential to bring additional time savings as bapyping
obtain an estimation of order lead time demand lwan is based on tardy repetitive sampling from histdric
excessive when compared to traditional parameime t demand data. Thus, we generate artificial inteemitt
series methods as non parametric techniques mayeeq demand data with a different level of sporadicitg.(30;
repeated sampling or lengthy learning about a ddmaB0 and 70 % of zero demand periods), simul&eQ)
pattern from historical data making the applicadiasf inventory control policy and compare PSMS+AC, PSMS
these methods potentially expensive mainly whealdpg LS with LR and B and PSMS + LS with LR and EM in
about large scale real life tasks [12]. term of the consumption of computational time aadé-
The idea of optimizing both when and how much toff between required fill rate and minimal reacthetting
order as a conjunctive task represents the cquagifstock and ordering costs for lead times ranging from 2.8
movement simulation (PSMS) [8]. In PSMS a simulategeriods.
period is divided into time intervals of equal l&mgnd a
demanded quantity is assigned for each intervadcdbas 2 Methodology

either historical real demand data or data derivesh & 2 1 Replacing bootstrapping with empirical method
generation technique. For each interval a replemésti, a in overestimating lead time demand

direct demand satisfaction from available inventand an As bootstrapping originally proposed by [21] regsir

_ordermg is simulated _under the con.trol of a se_kdact to set a sufficient number of sampling runs (i@0;11 000;
Inventory control pOI'CY' To obtain the pptlmals 000...) consisting of lead time selections of a aeth
combination of control variables for the selecteeentory ¢ pistorical data to construct an empirical rilgttion
COF‘”"' policy an optimization technique is .emP"’ye of lead time demand it can be quite time consuniligt
trying to reac.h.the trade_-off between the requeervice is why we suggest to simplify this procedure anglem
level and minimal holding and ordering costs. Ir thempirical method by [22] which is also a way easdy
literature this procedure is called optimizationa Vi, qerstand and implement. Empirical method does not

simu]ation [13]. _Optimizatioq via simulation (OvS) randomly sample demands from a time series, it just
provides a versatile and effective way to addresspiex gradually sums up these demands according to ditead

optimization problems in different domains by iM®0g 5.y similarly to bootstrapping creates an empirical

simulation models with optimization algorithms Ogistribution of lead time demand. If a time seressists

efficiently find optimal solutions [14]. More spéicially in for example of 20 periods and order lead timegods
this case of multiproduct inventory management, thg '

; . ' mpirical method creates 10 sums for periods 1+2; 3
system design variables are discrete valued, aml ttie P P

optimization problems are discrete optimization vi%"; 19+20, uses these sums to create the disuituf
! : rder lead time demands and based on a requireideser
simulation (DOvS) problems [15]. For DOvS problem g

Yevel the reorder point is directly set accordimgthe

many _optimization techniques are avai]able Inclgdin gistribution function. A disadvantage of this meaths a
heuristics such as random search [16] or hill clj&) and potentially low number of lead time demands confiog

meta_heuristics represented for example by evolgt';on too short time series or too long lead times aatlifwhy
algorithms [18], tabu search [19] or simulated @fing o iy this study examine the functionality of erfgat

[20]. In this paper, rather than on the efficiexplering of o4 for different order lead times (i.e. 2, & and
a solution space we focus on its reduction foll@nihe periods)

idea of local search (LS) proposed by [8]. Thesthas
pointed out that supplementing PSMS with alb2 Demand data characteristics

combinations search (AC) certainly outperforms h b . d
arametric forecasting methods in term of reachimger To compare the performance of bootstrapping an
b empirical method, we create 3 artificial demandadsets

hoIdlng_ and ordenng costs, thoug.h It guffers frpn%ach consisting of 10 000 time series with numibeeo
excessive consumption of computational time foretim

series with a high total non-zero demasy Thus, in LS de'.“a”.d period_s 30; 50 and 70 %..'_I'he length of & tim
[8] underestimate order lead time demand usingatinese”es is 36 periods. To generate artificial dendatd, we

regressionR r) and overestimate order lead time deman%IOpIy the twodstalge process proposed dby [8]'dAﬁm§
using bootstrapping R) and manage to explore Stage we randomly generate non-zero demands ged per

significantly reduced number oRs — R reorder uniformly distributed between 1 and 30 pieces &ed tve
nointsffixed order quantityQ@ combinations in R, Q) replace randomly selected non-zero demands witiszer

inventory control policy bringing substantial sayirof the obtain required level of sporadicity. To classifgntand
. X . L9 ke patterns of a time series within the data setsseeanerage
computational time while maintaining pretty decabiity demand interval4DI) based on equation (1):

to reach the best possible holding and orderingsdas. '

the ability to outperform parametric forecastingtinogls). 36

We continue to develop the principles of LS andngxe ADI'=-— 1)

St
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whereNs represents number of non-zero demand periods

and squared coefficient of variatiolC\?) based on
equation (2):

cv? = (ﬁ)2 )

St

We apply a demand classification scheme descritbed i
[23] usingADI equal to 0.49 an@\2 equal to 1.32 decisive
values to distinguish among smooth, erratic, initemt
and lumpy demand pattern. Number of time seriels thig
certain demand pattern displays Table 1 togethéhn wi
minimal Snin), maximal Gnay and average total demand

whereag,represents non-zero demand standard deviatigg,,).

andS, represents non-zero demand average.

Table 1 Features of randomly generated demand data

Demand pattern
0 demand periods Smoott Intermitten Erratic Lumpy Snin[pcs] | Swax[pcs] | Savg[pcs]
30 % 0 9 63: 0 36¢ 221 541 387
50 % 0 941« 0 58¢€ 152 41¢ 27¢
70 % 0 8 99¢ 0 1 00¢ 69 27¢ 17¢

It can be seen in Table 1 that we work predomigantPSMS+AC Excel VBA code described in [8] in a way to

with intermittent demand pattern with increasingnier
of lumpy time series.

measure the consumption of computational time seglgr
for R, Rs, and Rew calculations and subsequent

exploration of a solution space (Figure 1).
2.3 Past stock movement simulation and
arrangement of simulation experiments
To simulate randomly generated data we modify
original PSMS+LS Excel VBA code and also original

NOW() NOW(Q

v v

PSMS+AC for 10 000
time series

Step 1

NOW(Q NOW() NOW() NOW() NOW() NOW()
v v v v v v

Min R calculation

Max R calculation PSMS+LS for 10 000

Step2 | for 10000 time - £ 10,000 ims /LS fo
series using LR series using B time series
NOWO NOW( NOWQ NOW() NOW() NOW()

v v oV VoV v

Min R calculation

Max R calculation
for 10 000 time for 10 000 time
series using LR series using EM
Time >

PSMS+LS for 10 000

Step 3 time series

Figure 1 Arrangement of experiments for a data set

We simulate R, Q) inventory control policy taking into

account only such reorder poirR)(fixed order quantity Table 2 Parameters of simulation

(Q) combinations whereQ > R. In all simulation cn [% of average stock i€/period | 4%
experiments we use parameters summarized in Table 2 | Co[€/1 order 16
including holding costscf), ordering costscf), required FR [%] 95%
fill rate (FR) and pricef). p [€/piece 70
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For a time series and a simulateBdQ combination

the level of demand sporadicity and lead time tieall

ensuring at leagtR we calculate total holding and orderingsearch proposed by [8] performs correctly for trasnof

costs C) using equation (3):

C,=Al-c,"p-36+N,"c, 3
whereAl represents average inventory asidnumber of
orders.

In agreement with [8] there is no backorderingasial
satisfaction of demand is available and initialentory is
unified in all simulation experiments. Number ofrgding
runs for bootstrapping is set to be 100. Combining
artificial demand data sets (i.e. 10 000 time seeach)
with PSMS+AC for lead times equal to 2, 6, 12, &8qds,
with original PSMS+LS based on LR and B reorden{mi
estimations for lead times equal to 2, 6, 12, I®qde and

simulated time series because miniRal- Rr > 0 (see
Table 3, row 5) and for at least 95 % of simulatiete
seriesRir — Ric < 0 (see Table 3, row 3). This is in
accordance with findings in [8] proving PSMS+L Satork
efficiently for smooth/slightly intermittent demapadttern
(see Table 1) and we claim also whether ordertieaalis
relatively short. This is because with increasingeo lead
time the underestimating lead time demand with Ldrks
improperly as for example in case that level of dech
sporadicity is 30 % zero demand periods and leaé ti
increases from 2 to 6 periods now for at least 20f%
simulated time serieR.r - Rac > 0 (see Table 3, row 8).
Moreover, with increasing lead time we also registe
occurrence of botRg - Rac < 0 andRem - Rac < 0 (see e.g.
Table 3, rows 9, 11, 14, 16, 19 and 21, green\ahtes).

with modified PSMS+LS replacing B with EM again forThat brings a potential difficulty to find at leasteasible

lead times equal to 2, 6, 12, 18 periods we cauty3o 10

suboptimal solution with PSMS+LS because order lead

000- 3- 4 = 360 000 simulation experiments. To executéme estimations based on LR, B and EM are toodad

simulation experiments in MS Excel 2016 environmeat
use laptop with 2,8 GHz, 16 GB RAM processor.

3 Results and discussion

First, we try to find out whether the empirical hned
reliably fulfil the role of overestimating orderae time
demand and can be therefore an appropriate aliesrat
bootstrapping. Thus, for every simulated combimatd
the level of sporadicity (i.e. 30; 50; 70 % of zelemand
periods)/order lead time (i.e. 2; 6; 12 and 18qus) we
calculate the differences among reorder pointg for a
simulated time series in the form of percentilesk[€é 3)
and also create distributions of reorder pointsneoted
with the best reached minimal holding and ordedaosgts
for a simulated time series (Figure 2).

in many cases they cannot be sufficiently compensih
higher replenishment orders to reach at least medui
service level. Before we examine this problem dioaad
summarizes number of simulation experiments where
PSMS+LS returns no solution (i.e. results in Tat)leve
want to emphasize that the above described inabfliLS

to work properly continues to deteriorate with gesing
level of demand sporadicity when mainly LR is ueatd
underestimates lead time demand. More specificaljle

for the level of demand sporadicity 30 % zero detinan
periods and order lead time equal to 2 perRa@s— Rac <

0 is reached for at least 95 % of simulated timesgfor

50 % zero demand periods it goes down to 90 %T(abke

3, row 23) and for 70 % of zero demands it further
decreases to 80 % (see Table 3, row 43). This islyna
because the distribution Bics is becoming more volatile

As PSMS+AC returns the best possible holding an@nd with increasing number of time series Vigta = 1. On

ordering costs for a correct function of PSMS+L Sdzhon
LR and B or LR and EM we expeBir < Rac < Rs or

the other hand the ability of B and EM to overestieead
time demand remains pretty decent regardless to the

similarly R.g < Rac < Rewm. The results in Figure 2 and Tablegrowing level of sporadicity and in case of B itviery
3 show that overestimated reorder points based &kble even for higher lead times. For EM, desRiie -

empirical method are distributed closer to theritigtion

of the best possible reorder points (Recs) than reorder
points based on bootstrapping. For example in tzee
level of demand sporadicity is 30 % zero demandbger
and lead time is equal to 2 periods the minimdkdince

Rac are in general lower thd® - Rac with increasing lead
time more and more time series tendRim - Rac< 0 (see
e.g. Table 3, rows 56 or 61) because number of tieza
demands coming from time series drops (i.e. frof2 36
18; 36/6 = 6; 36/12 = 3 to 36/18 = 2) negativelfeeting

Rem - Racis 1 and 95 % percent”e is 30 while the minima‘he ablllty of EM to build the empirical distriboti of lead
differenceRs - Racis 4 and 95 % percentile is 32 (see Tabldemand and subsequently to overestimate lead time

3, rows 4 and 6; red font values). For this comiiamaof

demand for a required service level successfully.
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Table 3Ar percentiles

Ar - percentiles [%
Odemand | Lead | g:mpy | g 5 | 20| 20 | 30 | 40 | 50| 60 | 70 | 80 | 90 | 95 | 100 Ar
periods [%] | time
Both | 26 | 1c | 18 | 1€ | 15 | 14 | 12 | 11| 1c | 8 | 5 | 2 | 11 Rir- Rac
5 4 | 18 | 15 | 17 | 19 | 20 | 22 | 23 | 25 | 27 | 30 | 32 | 50 Re- Rac
2 18 | 27 | 29 | 3¢ | 32 | 33 | 34 | 35 | 36 | 38 | 39 | 41 | 48 Rs- R
M 1 | 10 | 12 | 14 | 16 | 18 | 19 | 21 | 22 | 24 | 28 | 30 | 52 | Rew Rac
1€ | 23 | 25 | 27 | 2¢ | 3c | 81 | 33 | 34 | 3¢ | 38 | 4¢ | 47 | Rem-Ru
Both | 63 | 23 | 19 | 14 | 11 | 8 | 6 | 4 | -1 2 7 12 | 54 | Rk Rac
5 22 | 27 | 32 | 35 | 38 | 41 | 44 | 47 | 51 | 56 | 62 | 11z Re- Rac
6 20 | 35 | 38 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 57 | 59 | 80 Re- Rg
M 1C | 14 | 18 | 22 | 25 | 28 | 31 | 35 | 3¢ | 46 | 53 | 11% | Rew Rac
20 9 | 21| 23| 27 | 29 | 32 | 34 | 37 | 30 | 43 | 48 | 52 | 84 | Rem-Ras
Both | 72 | 2¢ | 21 | 12 | 7 | 3 | 1 5 | 1C | 17 | 26 | 34 | 107 | Rur- Rac
5 29 | 37 | 46 | 52 | 57 | 62 | 67 | 72 | 79 | 88 | 97 | 161 | Re Rac
12 21 | 44 | 47 | 52 | 55 | 58 | 61 | 63 | 66 | 68 | 74 | 78 | 114 Rs- R
M 5 | 11 | 15 | 18 | 23 | 28 | 35 | 42 | 51 | 64 | 76 | 170 | Rew Rac
5 | 14 | 17 | 21 | 24 | 27 | 3¢ | 33 | 36 | 41 | 48 | 54 | 112 | Rew-Rux
Both | 78 | 29 | 21| 12 | 5 | 1 7 | 14 | 22 | 33 | 50 | 64 | 154 | Rug- Rac
5 35 | 46 | 58 | 66 | 74 | 81 | 88 | 96 | 107 | 121 | 134 | 21¢ Re- Rac
18 26 | 50 | 54 | 60 | 64 | 67 | 71 | 74 | 78 | 82 | 88 | 93 | 121 | Re-R=&
M 5 | 11 | 16 | 18 | 2C | 24 | 33 | 43 | 56 | 77 | 95 | 216 | Rew Rac
9 | 7 [ 10] 13 16| 20| 23| 26 | 30 | 35 | 42 | 48 | 84 | Rem-R=
Both | 26 | 2¢ | 1€ | 16 | 14| 12 | 11| 9 | 7 | & | =2 1 13 Rir- Rac
5 5 | 10 | 12 | 15 | 17 | 19 | 21 | 23 | 25 | 28 | 31 | 34 | 51 Re- Rac
2 12 | 23 | 24 | 27 | 2¢ | 3c | 32 | 33| 34 | 3¢ | 3¢ | 4c | s1 Rs- R
S 9 | 12 | 14 | 16 | 18 | 19 | 22 | 24 | 28 | 32 | 50 | Rew Rac
14 | 2¢ | 21 | 23 | 24 | 26 | 26 | 3¢ | 32 | 34 | 37 | 3¢ | 48 | Rem-R
Both | 66 | 24 | 19 | 13| 10 | 7 | 5 | 2 | 1 5 12 | 19 | 52 | Rk Rac
5 23 | 18 | 23 | 29 | 33 | 3€ | 3¢ | 43 | 47 | 51 | 58 | 6% | 10¢ Re- Rac
6 27 | 32 | 36 | 37 | 40 | 42 | 44 | 46 | 48 | 51 | 54 | 56 | 65 Re- R
em |28 7 |11 [ 16 [[16 | 23 [ 26 [ 26 [ 34 [ 3¢ [ 48 | 57 | 12 | RarRuc
50 8 | 18| 20 | 23 | 26 | 29 | 31 | 33 | 36 | 40 | 45 | 50 | 85 | Rew-Rx
Both | 71 | 27 | 2¢ | 11| 6 | -1 | 3 8 | 14 | 2C | 3C | 38 | 11z | Rir- Rac
5 21| 26 | 34 | 43 | 50 | 55 | 60 | 66 | 71 | 79 | 90 | 100 | 174 | Re Rac
12 12 | 3¢ | 43 | 48 | 51 | 54 | 57 | 6c | 62 | 66 | 71 | 75 | 104 Rs- R
S T G 7 | 12 | 16 | 22 | 28 | 35 | 42 | 52 | 65 | 77 | 185 | Rew Rac
0 | 11 | 14 | 17 | 2c | 22| 26 | 3c | 33 | 38 | 45 | 51 | 96 | Rew-Rux
Both | 92 | 31 | 23| 13| 7 | -1 | 5 | 12 | 20 | 32 | 49 | 63 | 147 | Rug- R
5 33 | 26 | 3¢ | 51 | 6C | 68 | 75 | 82 | 9C | 101 | 11€ | 12¢ | 20¢ Re- Rac
18 16 | 45 | 50 | 55 | 60 | 63 | 67 | 70 | 74 | 78 | 84 | 90 | 120 | Re-R=&
em @ | 1 | 6 [11 [ 12 [ 14 [1e [ 27 [ 38 [ 61 [ 78 | o1 | 21¢ | RarRuc
10 | 4 7 | 10| 13| 16 | 20 | 23 | 27 | 32 | 39 | 44 | 95 | Rewm-R=&
Both | 35 | 1¢ | 17 | 14 | 12 | -1c | 8 | 6 | 4 | =2 1 3 13 Rir- Rac
5 16 | 4 6 9 | 12| 14| 16| 19 21 29 21 20 5| Re Rac
2 9 |18 | 16 | 21 | 22 | 23 | 24 | 25 | 26 | 28 | 32 | 35 | a¢ Rs- R
ev 8| 5 7 9 | 11 | 18 | 15 | 17 | 19 | 22 | 25 | 28 | 52 | Rew Rac
9 | 17 | 1¢ | 2c | 21 [ 22 | 23 | 2a | 25 | 27 | 3c | 34 | 48 | Rew-R
Both | 53 | 21 | 16| 11| 8 | 5 | 2 | 1 | 4 9 16 | 21 | 44 | Rr Rac
5 22 | 14 | 16 | 24 | 28 | 32 | 35 | 3¢ | 43 | 48 | 55 | 61 | 8¢ Re- Rac
6 12 | 25 | 27 | 31 | 33 | 35 | 37 | 39 | 41 | 44 | 48 | 51 | 70 Re- Rg
em |22 4 | 8 [12 [16 | 2c [ 23 [ 27 | 31 [ 37 | 46 | 54 | o Rew- Rac
-0 5 | 14 | 16 | 19 | 21 | 23 | 25 | 28 | 30 | 34 | 39 | 43 | 73 | Rew-Rx
Both | 57 | 21 | 15| 8 | 3 | 1 5 | 1c | 15 | 21 | 31 | 3¢ | 7¢ Rir- Rac
5 22 | 23 | 30 | 38 | 44 | 49 | 54 | 59 | 65 | 72 | 83 | 91 | 136 | Re Rac
12 9 | 31 | 3 | 30 | 42 | 45 | 48 | 51 | 54 | 58 | 63 | 67 | 92 Rs- R
em |22 1 [ 5 9 | 15 | 21 | 26 | 32 | 39 | 47 | 60 | 72 | 154 | Rew Rac
2 | 8 [ 1c | 13| 16 | 18 | 21 | 24 | 27| 31 | 37 | 42 | 9¢ | Rewm R
Both | 71 | 27 | 21| 12| 6 | 1 | 5 | 11 | 19 | 29 | 44 | 56 | 116 | Rug- Rac
5 21| 23 | 32 | 42 | 5C | 57 | 64 | 7C | 78 | 88 | 101 | 11¢ | 17C Re- Rac
18 9 | 36 | 40 | 45 | 49 | 53 | 56 | 60 | 63 | 68 | 74 | 79 | 110 | Re-R=&
em L 1] 3 6 8 9 | 15 | 22 | 31 | 45 | 62 | 7¢ | 171 | Rew Rac
0| 2 | 4 7 9 | 12| 15 | 18| 21 | 25 | 31 | 36 | 72 | Rew-R=
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o
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- .
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o
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v

Reorder point [pcs]

Figure 2 RAC, RLR, RB and REM distribution

Table 4 shows a number of simulation experimentre both Rac and at the same tinfi® or Rem > Rer. In this

where PSMS+LS returns no solution.

Table 4 Simulation experiments with no solution

case PSMS+LS returns no solution because there is n
examined?/Q combination ensuring to achieve at least the
required service level. From the consumption of

computational time point of view that means comgilet
wasting time on the generationRfr, Rs/Rem and also on
PSMS+LS searching a fruitless solution space. Skcon

estimations oRg or Rem < R g for example because number

of sampling runs for bootstrapping is set too lowecause

empirical method works with too short time seriesam

long order lead time. This causes PSMS+LS does not

examine a singldk/Q combination at all and from the

consumption of computational time point of view ttha

means wasting time “just” on the generation Rk,

Rs/Rem. Anyway, the results in Table 4 proves

bootstrapping to perform significantly better than

empirical method in term of number of simulation

experiments where PSMS+LS returns no solution fwth

increasing level of sporadicity and prolonging ldiades.
Moreover, empirical method suffers much more fiem

< R kind of no solution mainly for too long lead times

(see for example Table 4, row 9). PSMS+LS have also

certain ability to overcome low estimated lead time

demand through adjusted replenishment orders ftr bo

bootstrapping and empirical method. For exampléciad

time equal to 6 periods from 19 time series with/8®f

zero demands PSMS+LS with B manage to find at ast

feasible solution for (19 - 17) = 2 time seriese(3able 4,

row 4) and PSMS+LS with EM do the same thing f& {5

0 demand No solution Time series
. Lead No for Reor .
periods | e [B/EM) solution Rem - Rac< with Rs or
[%] 0 Rem - Rac< 0
2 B 0 0 0
EM 0 0 0
6 B 17 17 1¢
30 EM 42 42 53
12 B 14 14 18
EM 161 161 231
B 5 5 1¢
18 EM 282 257 25¢
5 B 0 0 2
EM 5 5 9
6 B 35 35 38
50 EM 11z 11z 134
12 B 27 27 3C
EM 34¢ 34¢ 45¢
18 B 4 4 39
EM 62€ 53C 53C
2 B 34 34 97
EM 21 21 4¢
6 B 47 47 5E
70 EM 186 186 241
12 B 25 25 2¢
EM 46€ 467 607
18 B 7 7 43
EM | 100( 78¢ 79C

42) = 11 time series (see Table 4, row 5) in sitmatvhen

no Rs < Rir or Rem < R rtakes place.

In general there are two reasons why PSMS+LS return Besides the distribution of reorder points to corapa

no solution. First, estimations Bfgr andRs or R.r andRem

the ability of bootstrapping and empirical methanl t
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overestimate lead time demand in PSMS+LS we alsxplore a solution space with PSMS+LS. This
record the consumptions of the computational timeonsumption is shown in Table 5.
separately for the generation of reorder points &nd

Table 5 Consumption of computational time

0 demand Lead AC/ LR B/EM LS Total Simulated Time consumption
periods [%] time LS+B/ [min] | [min] | [min] | [min] | combinations of AC orLs
LS+EM [us/combination]
AC - - - 43.t 758 009 22 3.4¢4
2 LS+B 3.C 16.¢ 8.2 28.1 126 113 65 3.9¢
LS+EM 3.C 4.2 7.€ 14.¢ 117 305 92 3.9¢
AC - - - 44.¢ 758 009 22 3.5¢
6 LS+B 3.C 17.C 9.¢ 29.¢ 147 896 55 3.97
30 LS+EM 3.C 2.1 7.7 12.¢ 112 706 74 4.0¢
AC - - - 44.¢ 758 009 22 3.5¢
12 LS+B 3.C 17.¢ 9.t 30.4 143 751 13 3.97
LS+EM 3.C 1.€ 5.€ 10.2 79 663 60 4.2¢
AC - - - 45.1 758 009 22 3.51
18 LS+B 3.C 18.1 7.€ 29.C 115987 20: 4.0¢
LS+EM 3.C 1.t 3.€ 8.1 46 089 01 4.7]
AC - - - 23.C 394192 14 3.51
2 LS+B 3.C 18.( 5.¢ 26.¢ 83484 15 4.21]
LS+EM 3.C 4.2 5.€ 13.1 75 902 08 4.6(
AC - - - 24.1 394192 14 3.61
6 LS+B 3.1 18. 6.E 28.% 97 522 23 4.2(
50 LS+EM 3.2 2.4 5.2 10.¢ 72 85391 4.3¢
AC - - - 23.¢ 394192 14 3.68
12 LS+B 3.1 22.4 6.4 32.C 9254154 4.1¢
LS+EM 3.t 1.c 3.€ 9.2 50 095 34 4.65
AC - - - 23.€ 394192 14 3.5¢
18 LS+B 2.¢ 20.7 5.1 28.7 7194159 4.3C
LS+EM 3.C 1.t 2.4 6.€ 27 78199 5.1¢
AC - - - 9.t 148 422 08 3.8¢
2 LS+B 3.C 16.¢ 3.1 22.¢ 39 756 59 4.7c¢
LS+EM 3.C 4.C 3.C 10.1 38 448 40 4.72
AC - - - 9.2 148 422 08 3.7¢
6 LS+B 3.C 18. 3.€ 25.1 48 45172 4.6¢
70 LS+EM 3.C 2.1 3.C 8.1 35 91083¢ 4.9¢
AC - - - 9.2 148 422 08 3.71
12 LS+B 3.C 18.¢ 3.t 25.4 44 249 37 4.77
LS+EM 3.C 1.7 2.2 6.€ 23579 95 5.5¢
AC - - - 9.2 148 422 08 3.7¢
18 LS+B 2.¢ 18.7 2.€ 24.2 31498 29 5.0
LS+EM 3.C 1.t 1.4 5.¢ 12 397 84 7.01

The difference between the consumption ofminutes a data set with 10 000 time series) than th
computational time spent on the generatioRpédndRem  generation oR r taking constantly around 3 minutes per a
is quite impressive. While in all simulation expeentsRs  data set with 10 000 time series. It follows thawpéical
sampling with 100 runs takes from 16.8 to 22.4 n@ayer method is not just significantly faster but alsormsuitable
a data set with 10 000 time seriBsy needs only from 1.5 to be applied in tasks where a detailed discrétinatf time
to 4.3 minutes per a data set with 10 000 timeeseri could be advantageous (i.e. switching from months t
Furthermore, in contrary td?s, the consumption of weeks or days). Together with the significant spegedp
computational time spent on the generation Ry of generating the overestimated reorder point, the
decreases with increasing order lead time and therfead application of empirical method in PSMS+LS alsaHar
time 6 periods it even takes less time (i.e. frafith 2.4 reduces an explored solution space through thesrclos

~ 355~

Copyright © Acta Logistica, www.actalogistica.eu



Acta logistica - International Scientific Journal about Logistics
Volume: 12 2025 Issue: 2 Pages: 349-358 ISSN 1339-5629

Enhancing logistics of intermittent demand items: optimization via simulation based stock control
using empirical method
Jakub Andar, Jakub Dyntar

distribution of Rems due to the distribution of the best However, the acceleration of the overestimateddesor
possible reorder points coming from PSMS+AC (sdaldfa point generation and the additional reduction o th
5, the column entitled Simulated combinations, LS#AB solution space bringing the time savings must gulhia
LS+EM comparison). This enables to extend the dse band with a corresponding level of holding and ardg
PSMS+LS to strongly sporadic demand areasosts. That is why we for each simulation experimen
characteristic with lower total demanded quantiytlee calculate the difference between the best reacbiztiniy

total consumption of computational time of PSMS+L&nd ordering costs coming from PSMS+LS and the best
longer keeps up to be lower than PSMS+AC (see Tablepossible holding and ordering costs coming from
the column entitled Total [min], AC vs LS+EM PSMS+AC (i.eActpes). These differences are in the form

comparison). of percentiles displayed in Table 6.
Table 6Actpestpercentiles
Acthes - percentiles [%]
0 demand Lead
periods time B/EM 0 10 | 20 | 30 | 40 | 50 60 70 80 90 95 98 100
[%]

> B 0% | 0% | 0% | 0% | 0% | 0% | 0% 0% 0% 0% 0% 1% 41%

EM 0% | 0% | 0% | 0% | 0% | 0% | O% 0% 0% 0% 0% 1% 41%

6 B 0% | 0% | 0% | 0% | 0% | 0% | 0% 0% 3% 8% | 14% | 22% | 122%
30 EM 0% | 0% | 0% | 0% | 0% | 0% | 0% 0% 3% 8% | 14% | 22% | 122%
12 B 0% | 0% | 0% | 0% | 0% | 1% | 4% 8% | 13% | 21% | 29% | 40% | 103%

EM 0% | 0% | 0% | 0% | 0% | 1% | 5% 8% | 13% | 21% | 29% | 40% | 103%

18 B 0% | 0% | 0% | 0% | 1% | 3% | 6% 9% | 15% | 23% | 32% | 43% 95%

EM 0% | 0% | 0% | 0% | 1% | 4% | 7% | 10% | 15% | 23% | 32% | 43% 95%

> B 0% | 0% | 0% | 0% | 0% | 0% | 0% 0% 0% 0% 3% 11% | 101%

EM 0% | 0% | 0% | 0% | 0% | 0% | O% 0% 0% 0% 3% 11% | 101%
6 B 0% | 0% | 0% | 0% | 0% | 0% | 0% 1% 7% | 15% | 24% | 38% | 116%

50 EM 0% | 0% | 0% | 0% | 0% | 0% | O% 2% 7% | 15% | 24% | 38% | 116%
12 B 0% | 0% | 0% | 0% | 0% | 3% | 7% | 12% | 20% | 32% | 45% | 60% | 145%

EM 0% | 0% | 0% | 0% | 0% | 4% | 8% | 13% | 20% | 33% | 46% | 60% | 145%

18 B 0% | 0% | 0% | 0% | 0% | 3% | 8% | 13% | 21% | 35% | 47% | 65% | 159%

EM 0% | 0% | 0% | 0% | 1% | 4% | 8% | 14% | 22% | 35% | 48% | 66% | 159%

> B 0% | 0% | 0% | 0% | 0% | 0% | 0% 0% 0% 1% 9% 18% 74%

EM 0% | 0% | 0% | 0% | 0% | 0% | 0% 0% 0% 1% 9% 18% 74%

6 B 0% | 0% | 0% | 0% | 0% | 0% | 1% 7% | 16% | 30% | 46% | 68% | 517%

70 EM 0% | 0% | 0% | 0% | 0% | 0% | 1% 7% | 16% | 30% | 46% | 68% | 517%
12 B 0% | 0% | 0% | 0% | 2% | 7% | 13% | 22% | 34% | 55% | 76% | 104% | 368%

EM 0% | 0% | 0% | 0% | 3% | 8% | 15% | 23% | 36% | 57% | 78% | 105% | 368%

18 B 0% | 0% | 0% | 0% | 0% | 5% | 11% | 21% | 35% | 58% | 84% | 112% | 279%

EM 0% | 0% | 0% | 0% | 1% | 7% | 13% | 23% | 37% | 61% | 86% | 115% | 279%

In general, it can be seen in Table 6 that mainly f that empirical method is definitely the number cheice.
longer lead times (i.e. 12 and 18 periods) boqtgpirgy in It outperforms bootstrapping and linear regresgicterm
PSMS+LS performs slightly better than empiricallmoet  of the consumption of computational time while
For the level of sporadicity 30 % of zero demandgals maintaining the ability to execute one way explioraiof
and the lead time equal to 2 periods PSMS+LS wath b the solution space during the optimization. Thisasause,
B and EM reached the best possible holding andriogle similarly to bootstrapping, for the majority of geated
costs for at least 95 % of simulated time seriess twe data empirical method reliably overestimates laatk t
maximal difference in the total costs is up to 41 %emand (i.e. the additional optimization rests radgally
compared to PSMS+AC. In term of total holding andiecreasing the reorder point) and in a relativielyscase
ordering costs, the ability of PSMS+LS to perfoimiar that the lead time demand is underestimated PSMS+LS
to PSMS+AC decreases with increasing number of zereturns mostly no solution (i.e. the additionalimation
demand periods and also with the prolonging of temds. focuses on gradually increasing the reorder point).

This confirms that especially for a demand dateh vait
higher level of sporadicity it is useful to replate local 4 Conclusions

search with a more on a neighbourhood search edent |n this paper we examine whether empirical metfaod ¢
optimization based on a generation of a singleder replace bootstrapping in intermittent demand stmmktrol
point. The outputs from the simulation experimesttsw  pased on simulation. Thus, we generate artificéhand
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data with 30; 50 and 70 % of zero demand periods an of Economic and Social Reseayréfol. 15, No. 2, pp.
simulate reorder point/fixed order quantity invemto 1-21, 2013.

control policy using past stock movement simulaégol  [3] KOURENTZES, N., ATHANASOPOULOS, G.:
local search proposed by [8] to obtain the optitrzale-off Elucidate structure in intermittent demand series,
between holding and ordering costs and the reqdilled European Journal of Operational Resear&fol. 288,
rate for order lead time 2; 6; 12 and 18 periodi& dutputs No. 1, pp. 141-152, 2021.

from simulation experiments prove that empiricakime https://doi.org/10.1016/j.ejor.2020.05.046
outperforms bootstrapping in term of the consummptid [4] SYNTETOS, A., BABAI, M., GARDNER, E.:
computational time while maintaining similar abilito Forecasting intermittent inventory demands: simple
overestimate lead time demand. Thus, empirical oteth  parametric methods vs. bootstrappintpurnal of
can become a suitable substitute of bootstrappinie Business ResearchVol. 68, No. 8, pp. 1746-1752,

local search. Moreover, it can be successfully used 2015. https://doi.org/10.1016/j.jbusres.2015.03.034
generate an initial reorder point in a more on {B]WANG, S., KANG, Y., PETROPOULOS, F.
neighbourhood search oriented optimization as it Combining probabilistic forecasts of intermittent

potentially suffers from a less blindness comp#odthear demand European Journal of Operational Research
regression. Besides additional time savings, op#tion Vol. 315, No. 3, pp. 1038-1048, 2024.

via simulation based on a single reorder point gt https://doi.org/10.1016/j.ejor.2024.01.032

would also enable to control the consumption of6] GOLTSOS, T.E., SYNTETOS, A.A., GLOCK, C.H.,
computational time more efficiently and make foample IOANNOU, G.: Inventory—forecasting: Mind the gap,

a decision whether for a certain demand data it is European Journal of Operational Researsfol. 299,
advantageous to apply PSMS+AC prior to the No. 2, pp. 397-419, 2022.

optimization. This is because number of simulaRQ https://doi.org/10.1016/j.ejor.2021.07.040
combinations in PSMS+AC is equal to[7] PINCE, C., TURRINI, L., MEISSNER, J.: Internegtit
Total demand-(Total demand—1) and for the generated demand forecasting for spare parts: A critical eewi

2 Omega Vol. 105, pp. 1-30, 2021.

single reorder point it is then easy to decide omes https://doi.org/10.1016/j.omega.2021.102513
additional time spent on one way neighbourhoodc$ear[g8] HUSKOVA, K., DYNTAR, J.: Speeding up past stock
simply assigning a certain amount of computatidimaé movement simulation in sporadic demand inventory
to every change of the initial reorder point. Erivaif control, International Journal of Simulation Modelling
method does not require any kind of settings sueh a vol. 22, No. 1, pp. 41-51, 2023.

deciding on number of sampling runs in bootstragplt https://doi.org/10.2507/IJSIMM22-1-627

also does not require any kind of optimization 0[9] HASNI, M., AGUIR, M.S., BABAI, M.Z., JEMAI, Z.:

smoothing constants based on a selection of ampyigie Spare parts demand forecasting: a review on
accuracy metric which is common for SES based pootstrapping methods/nternational Journal of
parametric time series forecasting methods or aptamh Production Researghvol. 57, No. 15-16, pp. 4791-

of demand classification schemes and data aggosgts 4804, 20109.

an assumption free and data driven nonparametric https://doi.org/10.1080/00207543.2018.1424375
approach it also copes with both theoretical angiecal  [10] VAN WINGERDEN, E., BASTEN, R.J.l., DEKKER,
distributions of demand. This predetermines emgliric R., RUSTENBURG, W.D.: More grip on inventory
method to become an important part of a simulation-  control through improved forecasting: A comparative
optimization software solution focusing on sporadic  study at three companieliternational Journal of

demand inventory control in large scale real kfeks. Production Economigs/ol. 157, pp. 220-237, 2014.
https://doi.org/10.1016/}.ijpe.2014.08.018
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