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Abstract: In this paper we examine whether empirical method can replace bootstrapping in intermittent demand stock 
control based on simulation. Thus, we generate artificial demand data with 30; 50 and 70 % of zero demand periods and 
simulate reorder point/fixed order quantity inventory control policy using past stock movement simulation and the local 
search to obtain the optimal trade-off between holding and ordering costs and the required fill rate for order lead time 2; 
6; 12 and 18 periods. The outputs from simulation experiments prove that empirical method outperforms bootstrapping 
in term of the consumption of computational time while maintaining similar ability to overestimate lead time demand. 
Thus, empirical method can become a suitable substitute of bootstrapping in the local search. Moreover, it can be 
successfully used to generate an initial reorder point in a more on a one-way neighbourhood search oriented optimization. 
As empirical method copes both with theoretical and empirical demand distributions and does not require a deciding on 
number of sampling runs, an optimization of smoothing constants based on a selection of an appropriate accuracy metric, 
an adoption of a demand classification schemes or a data aggregation it is well predetermined to become an important 
part of a simulation-optimization software solution focusing on sporadic demand inventory control in large scale real life 
tasks. 
 
1 Introduction 

One of the most important tasks in supply chain 
management is inventory control. By effectively managing 
inventory such that total cost of ownership is kept to a 
minimum, the best inventory control techniques aim to 
lower supply chain costs. Today's market competitiveness 
is largely determined by a company's capacity to manage 
the difficulties of cutting expenses and lead times, raising 
customer satisfaction standards, and enhancing product 
quality [1]. The challenge of inventory management is to 
maintain a sufficient supply of a given good to satisfy an 
anticipated demand pattern while finding a fair trade-off 
between the expense of keeping the thing in stock and the 
potential consequences of running out [2]. 

Intermittent demand, characterized by sporadic demand 
arrivals with varying sizes and frequent periods of zero 
demand, poses a significant challenge in forecasting and 
stock control [3]. Intermittent demand is a prevalent 
phenomenon in various industries. Sectors like process 
industries, aerospace, automotive, IT, and the military 
often have a significant portion of their inventory value 
attributed to intermittent demand items, particularly in 
service and repair parts inventories [4]. Additionally, the 
after-sale industry heavily relies on items with intermittent 
demands, underscoring their importance in post-sales 
service [5]. 

To guarantee successful and economical operations 
throughout the supply chain, a variety of optimization 
approaches, technologies, and risk management measures 

must be integrated when dealing with this kind of demand 
pattern. In the literature, parametric time series forecasting 
based on single exponential smoothing (SES) is considered 
to represent a mainstream approach [6]. It requires to 
estimate mean and variance of lead time demand with help 
of a time-series forecasting method and subsequently use 
these characteristics as an input to stock management 
usually aimed at reaching the trade-off between a service 
level and inventory costs [7]. Time series forecasting 
techniques are widely used in practice because they are 
straightforward and simple to use. They mostly rely on 
historical data and make little effort to determine the 
factors driving the need for demanded items by including 
contextual information (e.g., expert assessments, product 
attributes, maintenance information). As a result, they can 
be easily automated using data that is readily available in 
ERP systems and take less work to acquire. However, the 
major drawbacks of the parametric techniques represent an 
assumption on a standard demand distribution and also 
perceiving demand forecasting and inventory control to be 
two separated stages [8]. 

That leads to the development of alternative data driven 
approaches including mainly bootstrapping [9], empirical 
method [10] and most recently the applications of neural 
networks [11]. As all these non-parametric approaches do 
not assume the order lead time demand to follow a 
particular distribution they are suitable for applications in 
demand forecasting of items with quite complicated and 
intriguing patterns. On the other hand these approaches still 
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separate estimating order lead time demand from inventory 
optimization not taking into account a calculation of 
economic order quantity. Moreover, time consumption to 
obtain an estimation of order lead time demand can be 
excessive when compared to traditional parametric time 
series methods as non parametric techniques may require 
repeated sampling or lengthy learning about a demand 
pattern from historical data making the applications of 
these methods potentially expensive mainly when speaking 
about large scale real life tasks [12]. 

The idea of optimizing both when and how much to 
order as a conjunctive task represents the core of past stock 
movement simulation (PSMS) [8]. In PSMS a simulated 
period is divided into time intervals of equal length and a 
demanded quantity is assigned for each interval based on 
either historical real demand data or data derived from a 
generation technique. For each interval a replenishment, a 
direct demand satisfaction from available inventory, and an 
ordering is simulated under the control of a selected 
inventory control policy. To obtain the optimal 
combination of control variables for the selected inventory 
control policy an optimization technique is employed 
trying to reach the trade-off between the required service 
level and minimal holding and ordering costs. In the 
literature this procedure is called optimization via 
simulation [13]. Optimization via simulation (OvS) 
provides a versatile and effective way to address complex 
optimization problems in different domains by integrating 
simulation models with optimization algorithms to 
efficiently find optimal solutions [14]. More specifically in 
this case of multiproduct inventory management, the 
system design variables are discrete valued, and thus the 
optimization problems are discrete optimization via 
simulation (DOvS) problems [15]. For DOvS problems 
many optimization techniques are available including 
heuristics such as random search [16] or hill climb [17] and 
metaheuristics represented for example by evolutionary 
algorithms [18], tabu search [19] or simulated annealing 
[20]. In this paper, rather than on the efficient exploring of 
a solution space we focus on its reduction following the 
idea of local search (LS) proposed by [8]. These authors 
pointed out that supplementing PSMS with all 
combinations search (AC) certainly outperforms 
parametric forecasting methods in term of reaching lower 
holding and ordering costs, though it suffers from 
excessive consumption of computational time for time 
series with a high total non-zero demand (S). Thus, in LS, 
[8] underestimate order lead time demand using linear 
regression (RLR) and overestimate order lead time demand 
using bootstrapping (RB) and manage to explore 
significantly reduced number of RB – RLR reorder 
points/fixed order quantity (Q) combinations in (R, Q) 
inventory control policy bringing substantial savings of the 
computational time while maintaining pretty decent ability 
to reach the best possible holding and ordering costs (i.e. 
the ability to outperform parametric forecasting methods). 
We continue to develop the principles of LS and examine 

whether in the overestimating order lead time demand a 
replacing bootstrapping with empirical method (EM) has a 
potential to bring additional time savings as bootstrapping 
is based on tardy repetitive sampling from historical 
demand data. Thus, we generate artificial intermittent 
demand data with a different level of sporadicity (i.e. 30; 
50 and 70 % of zero demand periods), simulate (R, Q) 
inventory control policy and compare PSMS+AC, PSMS + 
LS with LR and B and PSMS + LS with LR and EM in 
term of the consumption of computational time and trade-
off between required fill rate and minimal reached holding 
and ordering costs for lead times ranging from 2 to 18 
periods. 
 
2 Methodology 
2.1 Replacing bootstrapping with empirical method 

in overestimating lead time demand 
As bootstrapping originally proposed by [21] requires 

to set a sufficient number of sampling runs (i.e. 100; 1 000; 
5 000…) consisting of lead time selections of a demand 
from historical data to construct an empirical distribution 
of lead time demand it can be quite time consuming. That 
is why we suggest to simplify this procedure and employ 
empirical method by [22] which is also a way easily to 
understand and implement. Empirical method does not 
randomly sample demands from a time series, it just 
gradually sums up these demands according to a lead time 
and similarly to bootstrapping creates an empirical 
distribution of lead time demand. If a time series consists 
for example of 20 periods and order lead time is 2 periods, 
empirical method creates 10 sums for periods 1+2; 3+4; 
….; 19+20, uses these sums to create the distribution of 
order lead time demands and based on a required service 
level the reorder point is directly set according to the 
distribution function. A disadvantage of this method is a 
potentially low number of lead time demands coming from 
too short time series or too long lead times and that is why 
we in this study examine the functionality of empirical 
method for different order lead times (i.e. 2, 6, 12 and 
periods). 

 
2.2 Demand data characteristics 

To compare the performance of bootstrapping and 
empirical method, we create 3 artificial demand data sets 
each consisting of 10 000 time series with number of zero 
demand periods 30; 50 and 70 %. The length of a time 
series is 36 periods. To generate artificial demand data, we 
apply the two stage process proposed by [8]. At the first 
stage we randomly generate non-zero demands per period 
uniformly distributed between 1 and 30 pieces and then we 
replace randomly selected non-zero demands with zeros to 
obtain required level of sporadicity. To classify demand 
patterns of a time series within the data sets we use average 
demand interval (ADI) based on equation (1): 
 

��� � ��
��	

   (1) 
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where NSt represents number of non-zero demand periods 
and squared coefficient of variation (CV2) based on 
equation (2): 
 


�� � ��	
�̅	

�
�
   (2) 

 
where ���represents  non-zero demand standard deviation 
and �̅� represents non-zero demand average.  

 
We apply a demand classification scheme described in 

[23] using ADI equal to 0.49 and CV2 equal to 1.32 decisive 
values to distinguish among smooth, erratic, intermittent 
and lumpy demand pattern. Number of time series with the 
certain demand pattern displays Table 1 together with 
minimal (Smin), maximal (Smax) and average total demand 
(Savg).

  
Table 1 Features of randomly generated demand data 

  Demand pattern       
0 demand periods Smooth Intermittent Erratic Lumpy Smin [pcs] Smax [pcs] Savg [pcs] 

30 % 0 9 632 0 368 227 547 387 
50 % 0 9 414 0 586 152 419 279 
70 % 0 8 996 0 1 004 69 278 170 

It can be seen in Table 1 that we work predominantly 
with intermittent demand pattern with increasing number 
of lumpy time series. 

 
2.3 Past stock movement simulation and 

arrangement of simulation experiments 
To simulate randomly generated data we modify 

original PSMS+LS Excel VBA code and also original 

PSMS+AC Excel VBA code described in [8] in a way to 
measure the consumption of computational time separately 
for RLR, RB, and REM calculations and subsequent 
exploration of a solution space (Figure 1).

  

 
Figure 1 Arrangement of experiments for a data set 

 
We simulate (R, Q) inventory control policy taking into 

account only such reorder point (R)/fixed order quantity 
(Q) combinations where Q > R. In all simulation 
experiments we use parameters summarized in Table 2 
including holding costs (ch), ordering costs (co), required 
fill rate (FR) and price (p). 

 
 

 
Table 2 Parameters of simulation 

ch [% of average stock in €/period] 4% 
co [€/1 order] 16 
FR [%] 95% 
p [€/piece] 70 
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For a time series and a simulated R, Q combination 
ensuring at least FR we calculate total holding and ordering 
costs (Ct) using equation (3): 
 


� � �� ∙ �� ∙ � ∙ 36 � �� ∙ ��      (3) 
 

where AI represents average inventory and No number of 
orders.  

 
In agreement with [8] there is no backordering, a partial 

satisfaction of demand is available and initial inventory is 
unified in all simulation experiments. Number of sampling 
runs for bootstrapping is set to be 100. Combining 3 
artificial demand data sets (i.e. 10 000 time series each) 
with PSMS+AC for lead times equal to 2, 6, 12, 18 periods, 
with original PSMS+LS based on LR and B reorder points 
estimations for lead times equal to 2, 6, 12, 18 periods and 
with modified PSMS+LS replacing B with EM again for 
lead times equal to 2, 6, 12, 18 periods we carry out 3 ∙ 10 
000 ∙ 3 ∙ 4 = 360 000 simulation experiments. To execute 
simulation experiments in MS Excel 2016 environment we 
use laptop with 2,8 GHz, 16 GB RAM processor. 
 
3 Results and discussion 

First, we try to find out whether the empirical method 
reliably fulfil the role of overestimating order lead time 
demand and can be therefore an appropriate alternative to 
bootstrapping. Thus, for every simulated combination of 
the level of sporadicity (i.e. 30; 50; 70 % of zero demand 
periods)/order lead time (i.e. 2; 6; 12 and 18 periods) we 
calculate the differences among reorder points (∆R) for a 
simulated time series in the form of percentiles (Table 3) 
and also create distributions of reorder points connected 
with the best reached minimal holding and ordering costs 
for a simulated time series (Figure 2). 

 
As PSMS+AC returns the best possible holding and 

ordering costs for a correct function of PSMS+LS based on 
LR and B or LR and EM we expect RLR ≤ RAC ≤ RB or 
similarly RLR ≤ RAC ≤ REM. The results in Figure 2 and Table 
3 show that overestimated reorder points based on 
empirical method are distributed closer to the distribution 
of the best possible reorder points (i.e. RACs) than reorder 
points based on bootstrapping. For example in case that 
level of demand sporadicity is 30 % zero demand periods 
and lead time is equal to 2 periods the minimal difference 
REM - RAC is 1 and 95 % percentile is 30 while the minimal 
difference RB - RAC is 4 and 95 % percentile is 32 (see Table 
3, rows 4 and 6; red font values). For this combination of 

the level of demand sporadicity and lead time the local 
search proposed by [8] performs correctly for the most of 
simulated time series because minimal RB - RLR > 0 (see 
Table 3, row 5) and for at least 95 % of simulated time 
series RLR – RAC < 0 (see Table 3, row 3). This is in 
accordance with findings in [8] proving PSMS+LS to work 
efficiently for smooth/slightly intermittent demand pattern 
(see Table 1) and we claim also whether order lead time is 
relatively short. This is because with increasing order lead 
time the underestimating lead time demand with LR works 
improperly as for example in case that level of demand 
sporadicity is 30 % zero demand periods and lead time 
increases from 2 to 6 periods now for at least 20 % of 
simulated time series RLR - RAC > 0 (see Table 3, row 8). 
Moreover, with increasing lead time we also register an 
occurrence of both RB - RAC < 0 and REM - RAC < 0 (see e.g. 
Table 3, rows 9, 11, 14, 16, 19 and 21; green font values). 
That brings a potential difficulty to find at least a feasible 
suboptimal solution with PSMS+LS because order lead 
time estimations based on LR, B and EM are too low and 
in many cases they cannot be sufficiently compensate with 
higher replenishment orders to reach at least required 
service level. Before we examine this problem closely and 
summarizes number of simulation experiments where 
PSMS+LS returns no solution (i.e. results in Table 4) we 
want to emphasize that the above described inability of LS 
to work properly continues to deteriorate with increasing 
level of demand sporadicity when mainly LR is unable to 
underestimates lead time demand. More specifically, while 
for the level of demand sporadicity 30 % zero demand 
periods and order lead time equal to 2 periods RLR – RAC < 
0 is reached for at least 95 % of simulated time series, for 
50 % zero demand periods it goes down to 90 % (see Table 
3, row 23) and for 70 % of zero demands it further 
decreases to 80 % (see Table 3, row 43). This is mainly 
because the distribution of RACs is becoming more volatile 
and with increasing number of time series with RAC = 1. On 
the other hand the ability of B and EM to overestimate lead 
time demand remains pretty decent regardless to the 
growing level of sporadicity and in case of B it is very 
stable even for higher lead times. For EM, despite REM - 
RAC are in general lower than RB - RAC with increasing lead 
time more and more time series tend to REM - RAC < 0 (see 
e.g. Table 3, rows 56 or 61) because number of lead time 
demands coming from time series drops (i.e. from 36/2 = 
18; 36/6 = 6; 36/12 = 3 to 36/18 = 2) negatively affecting 
the ability of EM to build the empirical distribution of lead 
demand and subsequently to overestimate lead time 
demand for a required service level successfully. 
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Table 3 ∆R percentiles 
      ∆R - percentiles [%]   

0 demand 
periods [%] 

Lead 
time  B/EM 0 5 10 20 30 40 50 60 70 80 90 95 100 ∆R 

30 

2 

Both -26 -19 -18 -16 -15 -14 -12 -11 -10 -8 -5 -2 11 RLR - RAC 

B 
4 13 15 17 19 20 22 23 25 27 30 32 50 RB- RAC 
18 27 29 30 32 33 34 35 36 38 39 41 48 RB - RLR 

EM 
1 10 12 14 16 18 19 21 22 24 28 30 52 REM- RAC 
16 23 25 27 29 30 31 33 34 36 38 40 47 REM - RLR 

6 

Both -63 -23 -19 -14 -11 -8 -6 -4 -1 2 7 12 54 RLR - RAC 

B 
-27 22 27 32 35 38 41 44 47 51 56 62 112 RB- RAC 
20 35 38 41 43 45 47 49 51 53 57 59 80 RB - RLR 

EM 
-17 10 14 18 22 25 28 31 35 39 46 53 113 REM- RAC 
9 21 23 27 29 32 34 37 39 43 48 52 84 REM - RLR 

12 

Both -72 -29 -21 -13 -7 -3 1 5 10 17 26 34 107 RLR - RAC 

B 
-30 29 37 46 52 57 62 67 72 79 88 97 161 RB- RAC 
21 44 47 52 55 58 61 63 66 69 74 78 114 RB - RLR 

EM 
-16 5 11 15 18 23 28 35 42 51 64 76 170 REM- RAC 
5 14 17 21 24 27 30 33 36 41 48 54 112 REM - RLR 

18 

Both -78 -29 -21 -12 -5 1 7 14 22 33 50 64 154 RLR - RAC 

B 
-17 35 46 58 66 74 81 88 96 107 121 134 219 RB- RAC 
26 50 54 60 64 67 71 74 78 82 88 93 121 RB - RLR 

EM 
-8 5 11 16 18 20 24 33 43 56 77 95 218 REM- RAC 
-9 7 10 13 16 20 23 26 30 35 42 48 84 REM - RLR 

50 

2 

Both -29 -20 -18 -16 -14 -12 -11 -9 -7 -5 -2 1 13 RLR - RAC 

B 
-5 10 12 15 17 19 21 23 25 28 31 34 51 RB- RAC 
13 23 24 27 29 30 32 33 34 36 39 40 51 RB - RLR 

EM 
-6 7 9 12 14 16 18 19 22 24 28 32 50 REM- RAC 
14 20 21 23 24 26 28 30 32 34 37 39 49 REM - RLR 

6 

Both -66 -24 -19 -13 -10 -7 -5 -2 1 5 12 19 52 RLR - RAC 

B 
-23 18 23 29 33 36 39 43 47 51 59 65 105 RB- RAC 
27 32 36 37 40 42 44 46 48 51 54 56 65 RB - RLR 

EM 
-13 7 11 16 19 23 26 29 34 39 48 57 120 REM- RAC 
8 18 20 23 26 29 31 33 36 40 45 50 85 REM - RLR 

12 

Both -71 -27 -20 -11 -6 -1 3 8 14 20 30 39 112 RLR - RAC 

B 
-21 26 34 43 50 55 60 66 71 79 90 100 174 RB- RAC 
12 39 43 48 51 54 57 60 62 66 71 75 104 RB - RLR 

EM 
-37 0 7 12 16 22 28 35 42 52 65 77 185 REM- RAC 
0 11 14 17 20 23 26 30 33 38 45 51 96 REM - RLR 

18 

Both -92 -31 -23 -13 -7 -1 5 12 20 32 49 63 147 RLR - RAC 

B 
-33 29 39 51 60 68 75 82 90 101 116 129 208 RB- RAC 
16 45 50 55 60 63 67 70 74 78 84 90 120 RB - RLR 

EM 
-9 -1 6 11 12 14 19 27 38 51 73 91 213 REM- RAC 
-10 4 7 10 13 16 20 23 27 32 39 44 95 REM - RLR 

70 

2 

Both -35 -19 -17 -14 -12 -10 -8 -6 -4 -2 1 3 13 RLR - RAC 

B 
-16 4 6 9 12 14 16 19 21 23 27 29 50 RB- RAC 
9 18 19 21 22 23 24 25 26 28 32 35 49 RB - RLR 

EM 
-8 5 7 9 11 13 15 17 19 22 25 28 52 REM- RAC 
9 17 19 20 21 22 23 24 25 27 30 34 49 REM - RLR 

6 

Both -53 -21 -16 -11 -8 -5 -2 1 4 9 16 21 44 RLR - RAC 

B 
-22 14 19 24 28 32 35 39 43 48 55 61 89 RB- RAC 
12 25 27 31 33 35 37 39 41 44 48 51 70 RB - RLR 

EM 
-13 4 8 12 16 20 23 27 31 37 46 54 97 REM- RAC 
5 14 16 19 21 23 25 28 30 34 39 43 73 REM - RLR 

12 

Both -57 -21 -15 -8 -3 1 5 10 15 21 31 39 79 RLR - RAC 

B 
-22 23 30 38 44 49 54 59 65 72 83 91 136 RB- RAC 
9 31 35 39 42 45 48 51 54 58 63 67 92 RB - RLR 

EM 
-32 -1 5 9 15 21 26 32 39 47 60 72 154 REM- RAC 
-2 8 10 13 16 18 21 24 27 31 37 43 99 REM - RLR 

18 

Both -71 -27 -21 -12 -6 -1 5 11 19 29 44 56 116 RLR - RAC 

B 
-21 23 32 42 50 57 64 70 78 88 101 113 170 RB- RAC 
9 36 40 45 49 53 56 60 63 68 74 79 110 RB - RLR 

EM 
-7 -1 3 6 8 9 15 23 31 45 62 79 171 REM- RAC 
-10 2 4 7 9 12 15 18 21 25 31 36 72 REM - RLR 
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Figure 2 RAC, RLR, RB and REM distribution 

Table 4 shows a number of simulation experiments 
where PSMS+LS returns no solution. 
 

Table 4 Simulation experiments with no solution 

0 demand 
periods 

[%] 

Lead 
time B/EM

No 
solution 

No solution 
for RB or 

REM - RAC < 
0 

Time series 
with RB or 

REM - RAC < 0 

30 

2 
B 0 0 0 

EM 0 0 0 

6 
B 17 17 19 

EM 42 42 53 

12 
B 14 14 18 

EM 161 161 231 

18 
B 5 5 19 

EM 282 257 259 

50 

2 
B 0 0 2 

EM 5 5 9 

6 
B 35 35 38 

EM 113 113 134 

12 
B 27 27 30 

EM 348 348 459 

18 
B 4 4 39 

EM 628 530 530 

70 

2 
B 34 34 97 

EM 21 21 49 

6 
B 47 47 55 

EM 186 186 241 

12 
B 25 25 29 

EM 468 467 607 

18 
B 7 7 43 

EM 1 000 789 790 
 
In general there are two reasons why PSMS+LS returns 

no solution. First, estimations of RLR and RB or RLR and REM 

are both < RAC and at the same time RB or REM ≥ RLR. In this 
case PSMS+LS returns no solution because there is no 
examined R/Q combination ensuring to achieve at least the 
required service level. From the consumption of 
computational time point of view that means completely 
wasting time on the generation of RLR, RB/REM and also on 
PSMS+LS searching a fruitless solution space. Second, 
estimations of RB or REM < RLR for example because number 
of sampling runs for bootstrapping is set too low or because 
empirical method works with too short time series or too 
long order lead time. This causes PSMS+LS does not 
examine a single R/Q combination at all and from the 
consumption of computational time point of view that 
means wasting time “just” on the generation of RLR, 
RB/REM. Anyway, the results in Table 4 proves 
bootstrapping to perform significantly better than 
empirical method in term of number of simulation 
experiments where PSMS+LS returns no solution both for 
increasing level of sporadicity and prolonging lead times. 
Moreover, empirical method suffers much more from REM 
< RLR kind of no solution mainly for too long lead times 
(see for example Table 4, row 9). PSMS+LS have also a 
certain ability to overcome low estimated lead time 
demand through adjusted replenishment orders for both 
bootstrapping and empirical method. For example for lead 
time equal to 6 periods from 19 time series with 30 % of 
zero demands PSMS+LS with B manage to find at least a 
feasible solution for (19 - 17) = 2 time series (see Table 4, 
row 4) and PSMS+LS with EM do the same thing for (53 - 
42) = 11 time series (see Table 4, row 5) in situation when 
no RB < RLR or REM < RLR takes place. 

Besides the distribution of reorder points to compare 
the ability of bootstrapping and empirical method to 
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overestimate lead time demand in PSMS+LS we also 
record the consumptions of the computational time 
separately for the generation of reorder points and to 

explore a solution space with PSMS+LS. This 
consumption is shown in Table 5.

  
Table 5 Consumption of computational time 

0 demand 
periods [%] 

Lead 
time 

AC/ 
LS+B/ 

LS+EM 

LR 
[min] 

B/EM 
[min] 

LS 
[min] 

Total 
[min] 

Simulated 
combinations 

Time consumption 
of AC or LS  

[µs/combination] 

30 

2 
AC - - - 43.5 758 009 224 3.44 

LS+B 3.0 16.8 8.3 28.1 126 113 655 3.96 
LS+EM 3.0 4.2 7.8 14.9 117 305 928 3.98 

6 
AC - - - 44.8 758 009 224 3.54 

LS+B 3.0 17.0 9.8 29.8 147 896 555 3.97 
LS+EM 3.0 2.1 7.7 12.8 112 706 747 4.08 

12 
AC - - - 44.9 758 009 224 3.55 

LS+B 3.0 17.9 9.5 30.4 143 751 137 3.97 
LS+EM 3.0 1.6 5.6 10.3 79 663 608 4.25 

18 
AC - - - 45.1 758 009 224 3.57 

LS+B 3.0 18.1 7.9 29.0 115 987 202 4.09 
LS+EM 3.0 1.5 3.6 8.1 46 089 013 4.71 

50 

2 
AC - - - 23.0 394 192 140 3.51 

LS+B 3.0 18.0 5.9 26.8 83 484 157 4.21 
LS+EM 3.0 4.3 5.8 13.1 75 902 081 4.60 

6 
AC - - - 24.1 394 192 140 3.67 

LS+B 3.1 18.4 6.8 28.3 97 522 230 4.20 
LS+EM 3.2 2.4 5.3 10.9 72 853 910 4.38 

12 
AC - - - 23.9 394 192 140 3.63 

LS+B 3.1 22.4 6.4 32.0 92 541 546 4.18 
LS+EM 3.5 1.9 3.9 9.3 50 095 343 4.65 

18 
AC - - - 23.6 394 192 140 3.59 

LS+B 2.9 20.7 5.1 28.7 71 941 595 4.30 
LS+EM 3.0 1.5 2.4 6.9 27 781 994 5.19 

70 

2 
AC - - - 9.5 148 422 089 3.83 

LS+B 3.0 16.8 3.1 22.9 39 756 591 4.70 
LS+EM 3.0 4.0 3.0 10.1 38 448 406 4.72 

6 
AC - - - 9.3 148 422 089 3.75 

LS+B 3.0 18.4 3.8 25.1 48 451 721 4.68 
LS+EM 3.0 2.1 3.0 8.1 35 910 839 4.96 

12 
AC - - - 9.2 148 422 089 3.71 

LS+B 3.0 18.9 3.5 25.4 44 249 372 4.77 
LS+EM 3.0 1.7 2.2 6.9 23 579 957 5.55 

18 
AC - - - 9.3 148 422 089 3.75 

LS+B 2.9 18.7 2.6 24.2 31 498 299 5.03 
LS+EM 3.0 1.5 1.4 5.9 12 397 843 7.01 

 
The difference between the consumption of 

computational time spent on the generation of RB and REM 
is quite impressive. While in all simulation experiments RB 
sampling with 100 runs takes from 16.8 to 22.4 minutes per 
a data set with 10 000 time series, REM needs only from 1.5 
to 4.3 minutes per a data set with 10 000 time series. 
Furthermore, in contrary to RB, the consumption of 
computational time spent on the generation of REM 
decreases with increasing order lead time and from the lead 
time 6 periods it even takes less time (i.e. from 1.5 to 2.4 

minutes a data set with 10 000 time series) than the 
generation of RLR taking constantly around 3 minutes per a 
data set with 10 000 time series. It follows that empirical 
method is not just significantly faster but also more suitable 
to be applied in tasks where a detailed discretization of time 
could be advantageous (i.e. switching from months to 
weeks or days). Together with the significant speeding up 
of generating the overestimated reorder point, the 
application of empirical method in PSMS+LS also further 
reduces an explored solution space through the closer 
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distribution of REMs due to the distribution of the best 
possible reorder points coming from PSMS+AC (see Table 
5, the column entitled Simulated combinations, LS+B vs 
LS+EM comparison). This enables to extend the use of 
PSMS+LS to strongly sporadic demand areas 
characteristic with lower total demanded quantity as the 
total consumption of computational time of PSMS+LS 
longer keeps up to be lower than PSMS+AC (see Table 5, 
the column entitled Total [min], AC vs LS+EM 
comparison). 

However, the acceleration of the overestimated reorder 
point generation and the additional reduction of the 
solution space bringing the time savings must go hand in 
hand with a corresponding level of holding and ordering 
costs. That is why we for each simulation experiment 
calculate the difference between the best reached holding 
and ordering costs coming from PSMS+LS and the best 
possible holding and ordering costs coming from 
PSMS+AC (i.e. ∆Ct,best). These differences are in the form 
of percentiles displayed in Table 6.

  
Table 6 ∆Ct,best percentiles 

      ∆Ct,best - percentiles [%] 
0 demand 
periods 

[%] 

Lead 
time 

B/EM 0 10 20 30 40 50 60 70 80 90 95 98 100 

30 

2 
B 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 41% 

EM 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 41% 

6 
B 0% 0% 0% 0% 0% 0% 0% 0% 3% 8% 14% 22% 122% 

EM 0% 0% 0% 0% 0% 0% 0% 0% 3% 8% 14% 22% 122% 

12 
B 0% 0% 0% 0% 0% 1% 4% 8% 13% 21% 29% 40% 103% 

EM 0% 0% 0% 0% 0% 1% 5% 8% 13% 21% 29% 40% 103% 

18 
B 0% 0% 0% 0% 1% 3% 6% 9% 15% 23% 32% 43% 95% 

EM 0% 0% 0% 0% 1% 4% 7% 10% 15% 23% 32% 43% 95% 

50 

2 
B 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 3% 11% 101% 

EM 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 3% 11% 101% 

6 
B 0% 0% 0% 0% 0% 0% 0% 1% 7% 15% 24% 38% 116% 

EM 0% 0% 0% 0% 0% 0% 0% 2% 7% 15% 24% 38% 116% 

12 
B 0% 0% 0% 0% 0% 3% 7% 12% 20% 32% 45% 60% 145% 

EM 0% 0% 0% 0% 0% 4% 8% 13% 20% 33% 46% 60% 145% 

18 
B 0% 0% 0% 0% 0% 3% 8% 13% 21% 35% 47% 65% 159% 

EM 0% 0% 0% 0% 1% 4% 8% 14% 22% 35% 48% 66% 159% 

70 

2 
B 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 9% 18% 74% 

EM 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 9% 18% 74% 

6 
B 0% 0% 0% 0% 0% 0% 1% 7% 16% 30% 46% 68% 517% 

EM 0% 0% 0% 0% 0% 0% 1% 7% 16% 30% 46% 68% 517% 

12 
B 0% 0% 0% 0% 2% 7% 13% 22% 34% 55% 76% 104% 368% 

EM 0% 0% 0% 0% 3% 8% 15% 23% 36% 57% 78% 105% 368% 

18 
B 0% 0% 0% 0% 0% 5% 11% 21% 35% 58% 84% 112% 279% 

EM 0% 0% 0% 0% 1% 7% 13% 23% 37% 61% 86% 115% 279% 

In general, it can be seen in Table 6 that mainly for 
longer lead times (i.e. 12 and 18 periods) bootstrapping in 
PSMS+LS performs slightly better than empirical method. 
For the level of sporadicity 30 % of zero demand periods 
and the lead time equal to 2 periods PSMS+LS with both 
B and EM reached the best possible holding and ordering 
costs for at least 95 % of simulated time series and the 
maximal difference in the total costs is up to 41 % 
compared to PSMS+AC. In term of total holding and 
ordering costs, the ability of PSMS+LS to perform similar 
to PSMS+AC decreases with increasing number of zero 
demand periods and also with the prolonging of lead times. 
This confirms that especially for a demand data with a 
higher level of sporadicity it is useful to replace the local 
search with a more on a neighbourhood search oriented 
optimization based on a generation of a single reorder 
point. The outputs from the simulation experiments show 

that empirical method is definitely the number one choice. 
It outperforms bootstrapping and linear regression in term 
of the consumption of computational time while 
maintaining the ability to execute one way exploration of 
the solution space during the optimization. This is because, 
similarly to bootstrapping, for the majority of generated 
data empirical method reliably overestimates lead time 
demand (i.e. the additional optimization rests in gradually 
decreasing the reorder point) and in a relatively stray case 
that the lead time demand is underestimated PSMS+LS 
returns mostly no solution (i.e. the additional optimization 
focuses on gradually increasing the reorder point). 
 
4 Conclusions 

In this paper we examine whether empirical method can 
replace bootstrapping in intermittent demand stock control 
based on simulation. Thus, we generate artificial demand 
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data with 30; 50 and 70 % of zero demand periods and 
simulate reorder point/fixed order quantity inventory 
control policy using past stock movement simulation and 
local search proposed by [8] to obtain the optimal trade-off 
between holding and ordering costs and the required fill 
rate for order lead time 2; 6; 12 and 18 periods. The outputs 
from simulation experiments prove that empirical method 
outperforms bootstrapping in term of the consumption of 
computational time while maintaining similar ability to 
overestimate lead time demand. Thus, empirical method 
can become a suitable substitute of bootstrapping in the 
local search. Moreover, it can be successfully used to 
generate an initial reorder point in a more on a 
neighbourhood search oriented optimization as it 
potentially suffers from a less blindness compared to linear 
regression. Besides additional time savings, optimization 
via simulation based on a single reorder point generation 
would also enable to control the consumption of 
computational time more efficiently and make for example 
a decision whether for a certain demand data it is 
advantageous to apply PSMS+AC prior to the 
optimization. This is because number of simulated R/Q 
combinations in PSMS+AC is equal to 
����  "#$�%"∙&����  "#$�%"'()

�  and for the generated 

single reorder point it is then easy to decide on some 
additional time spent on one way neighbourhood search 
simply assigning a certain amount of computational time 
to every change of the initial reorder point. Empirical 
method does not require any kind of settings such as 
deciding on number of sampling runs in bootstrapping. It 
also does not require any kind of optimization of 
smoothing constants based on a selection of an appropriate 
accuracy metric which is common for SES based 
parametric time series forecasting methods or an adoption 
of demand classification schemes and data aggregation. As 
an assumption free and data driven nonparametric 
approach it also copes with both theoretical and empirical 
distributions of demand. This predetermines empirical 
method to become an important part of a simulation-
optimization software solution focusing on sporadic 
demand inventory control in large scale real life tasks. 
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