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Abstract: The importance of anticipating and preventing disruptions is underscored by the increased operational 
complexity and vulnerability caused by advancements in supply chain management (SCM). This has spurred interest in 
integrating machine learning (ML) and deep learning (DL) into supply chain risk management (SCRM). In this paper, we 
introduce a tailored method using ML and DL to improve SCRM by predicting supplier failures, thus boosting efficiency 
and resilience in SC operations. Our method involves five phases focused on classifying and predicting supplier failures 
in non-conforming deliveries. This involves forecasting failure quantities and estimating total disruption costs. Initially, 
data from an automotive company is selected, and appropriate potential features and algorithms are selected, performance 
metric aligns with case study objectives, facilitating method evaluation are used such as: Precision, recall, F1-score, and 
accuracy metrics assess classification models, while Mean Squared Error (MSE) is used for regression tasks. Finally, an 
experimental design optimizes models, assessing success rates of various algorithms and their parameters within the 
chosen feature space. Experimental results underscore the success of our methodology in model development. In the 
classification task, the Random Forest (RF) classifier achieved 86% accuracy. When combined with the Gradient Boosting 
classifier, the ensemble exhibited enhanced accuracy, highlighting the complementary strengths of both algorithms and 
their synergistic impact, surpassing the performance of RF, Support Vector Regression (SVR), k-Nearest Neighbors 
(KNN), and Artificial Neural Network (ANN). Noteworthy is the performance in regression tasks, where Linear 
Regression, ANN, and RF Regressor displayed exceptionally low MSE compared to other models. 
 
1 Introduction 

To meet delivery deadlines and customer expectations, 
it becomes crucial for manufacturing companies to predict 
potential disruptions in their upstream SC caused by non-
conforming deliveries. this proactive approach ensures that 
the assembly process commences as scheduled, ultimately 
preventing higher production and operational costs. 

In essence, non-quality products can trigger a cascade 
of negative effects, ranging from financial losses and 
operational challenges for manufacturers to safety risks 
and dissatisfaction for customers. The increasing intricacy 
and fragility of SCs underscore the need for enhanced 
monitoring of SC performance. 

Quality issues within the supplier chain can trigger a 
chain reaction, disrupting the entire SC. This disruption can 
impede the manufacturer's capacity to source essential 
components, leading to production schedule disruptions, 
delays in product delivery, and the potential to compromise 
customer commitments. manufacturers may find 
themselves bearing the burden of additional expenses 
incurred in reworking or scrapping defective products, 
significantly impacting profitability. Additionally, non-
quality products often result in customer dissatisfaction, 
manifesting as complaints, product returns, and 
unfavourable reviews. 

With the growing accumulation of data and heightened 
engagement in communication with primary and upper-tier 
suppliers, it becomes feasible to anticipate and alleviate 
potential disruptions at a more localized level in the SC. 
This is particularly relevant given the increasing emphasis 
on leveraging Big Data (BD) and ML in SCM to gain 
additional insights into SC operations, ultimately 
enhancing overall performance and reducing risks [1-6].  

Emerging digitalization technologies, including the 
Internet of Things (IOT) and artificial intelligence (AI), 
offer new prospects for predicting disruptions in SCM      
[7-9]. Conducting empirical and sophisticated research is 
crucial for a deeper exploration of the potential of ML in 
forecasting and mitigating risks arising from supplier 
disruptions. Our contribution involves an extensive case 
study that demonstrates the application of AI techniques in 
SCM for predicting disruptions. This study specifically 
concentrates on implementing ML and DL to predict 
disruptions related to materials from suppliers, with a 
specific focus on non-quality products. The research 
emphasis is encapsulated in the following research 
questions: 

Failure Prediction RQ 1: Can we predict which supplier 
issues are likely to occur in the near future based on 
historical data, and if so, how can we use this information 
to prevent them? 
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Number of Issues Prediction RQ 2: Can we predict how 
many issues of the same type will occur for a specific 
failure, which could help in resource allocation and 
planning? 

Total Cost Prediction RQ 3: Given information about a 
supplier issue, can we predict the total cost incurred by the 
failure, which would be valuable for cost estimation and 
budget planning? 

These goals and questions establish a robust foundation 
for our research paper. By concentrating research efforts 
on quality issues causing SC disruptions, we can 
significantly reduce risk propagation and its impact on the 
SC operations. This proactive approach may help in 
improving supplier performance and maintaining a more 
resilient and efficient SC. 

Each of these prediction questions addresses a specific 
facet of SC issue management. By homing in on these 
questions and leveraging AI models, we can offer valuable 
contributions to the following key areas: 

SC risk identification and assessment: ML models 
enable the prediction and early detection of potential 
suppliers issues that may occur in the future, aiding in the 
identification of potential risks that may affect the SC. 

Cost Estimation: Drawing from historical data, ML 
models estimate the cost of supplier issues, providing 
valuable insights for budget planning. 

The structure of the paper is as follows: Section 2 
provides a review to the recent progress in predictive data 
analytics within SCM. Section 3 provides the methodology 
adopted in accordance with ML and DL models, providing 
an overview of the case study dataset detailing the chosen 
algorithms along with their outcomes. Moreover, an 
evaluation of the performance of our models is conducted. 
To conclude, a conclusion is presented in the last section. 

 
2 Literature review 

Several authors highlight the increasing complexity and 
global nature of SCs, underscoring the growing 
significance of anticipating and preparing for disruptions 
[10,11]. Scholarly discussions have suggested the potential 
use of predictive algorithms in SCRM [2,12,13] to 
diminish the influence of a disturbance, there are generally 
two choices available. The initial choice involves reducing 
the likelihood of its happening, while the second option 
aims to establish a robust SC that swiftly reverts to its 
initial state following a disruption.      these alternatives are 
the focal points of two distinct sectors within SCM, 
namely, SCRM and SC resilience. within both the broader 
scope of SCM and its associated fields, data analytics 
remains a fundamental and integral tool in operations [14]. 
Data analytics in SCM is characterized by the application 
of various quantitative and qualitative methods in 
combination with SCM theory. Its purpose is to address 
pertinent SCM issues, predict outcomes, and consider 
factors such as data quality and availability. Additionally, 
they categorize predictive analytics as a segment of data 
analytics, specifically focused on enhancing SCs and 
reducing risks by forecasting potential future occurrences. 

Conversely, [15] and [16] categorize the existing methods 
into descriptive, predictive, and prescriptive analytics. 
descriptive analytics within SCM focuses on 
comprehending past events [11-13]. 

Recent research predominantly emphasizes 
prescriptive analytics over descriptive and predictive 
analytics within these three categories [4]. However, in line 
with the standard practice of data analytics, not limited to 
SCM, the efficacy of prescriptive models is dependent on 
descriptive and predictive models [3,4]. Consequently, the 
previously mentioned review papers advocate for further 
exploration in descriptive and predictive analytics within 
SCM. Thus, we enhance the current body of knowledge by 
introducing a case study that highlights the significance of 
predictive analytics within the field of SCM. 

[17-20] emphasize the fundamental role and 
application of BD and AI plays a crucial role in the 
procurement process's digital evolution, viewed as a 
pivotal element for enhancing the competitive edge, 
effectiveness, and financial success of organizations' SCs. 
The ever-expanding access to a more extensive range of 
data in terms of volume, speed, and diversity presents new 
prospects to transform the influence of data analytics 
methods [21].Within the broader spectrum of SCM, ML 
and various data mining methodologies are regularly 
employed for multiple purposes. These include demand 
forecasting [22-24] establishing retail prices in SCs and 
managing financial transactions [25-29]. In the particular 
realms of procurement and logistics, prior studies primarily 
focuses on selecting potential suppliers for particular 
products [30,31]. However, the area of missing materials 
due to delayed deliveries remains an overlooked aspect of 
research [32] there is a scarcity of models dedicated to 
predicting suppliers quality issue. [33] introduced a ML 
based approach designed to forecast delays in supplier 
deliveries, the primary focus was on ensuring 
interpretability to aid decision-making based on the 
predictions. Utilizing an actual dataset from a multi-tier 
aerospace manufacturing SC, they conducted a comparison 
between The effectiveness and clarity of SVM and decision 
trees (DT) Despite slightly inferior performance metrics, 
the authors advocated for the use of DT as the preferred 
ML algorithm, emphasizing their interpretability over 
performance. [34] conducted a study in an original 
equipment manufacturer (OEM), where they forecasted 
delays in deliveries from Tier 1 suppliers by analyzing 
historical product data. By comparing five ML algorithms, 
they determined that the RF algorithm demonstrated 
superior performance when compared to SVM, logistic 
regression, linear regression, and the KNN algorithm. 

Similar to the findings of [33] more sophisticated ML 
algorithms such as ANN might have demonstrated superior 
performance but were not explored. Although we 
acknowledge the importance of incorporating more 
interpretable ML approaches in SCM, we assert that it is 
equally crucial to investigate other algorithms like 
ensemble algorithms or ANN, even if they may pose 
challenges in terms of interpretability. This exploration is 
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essential to provide decision-makers with a comprehensive 
array of options. 

Numerous approaches center around data analytics in 
SCM. However, the exploration of predictive analytics 
within SCM remains an area that has not received 
sufficient attention. A particular aspect requiring further 
investigation is the precise identification and quantification 
of non-conform deliveries with potential impact for both 
manufacturers and customers. Existing methodologies in 
issues related to late and non-conform deliveries face 
limitations. 

Therefore, our contribution to the existing literature 
comes in the form of a case study in predictive analytics 
within SCM, employing ML and DL algorithms. 
Specifically, our focus lies in predicting non conform 
deliveries from suppliers, employing a supervised learning 
approach and utilizing an authentic dataset from an 
automotive manufacturer. In this study, we contrast 
straightforward ML and DL algorithms such as Random 
Forest Classifier and Regressor, SVM, SVR, Linear 
Regression, KNN, and ANN.  

 

 
Figure 1 Methodology for predicting supplier risks utilizing ML 

and DL techniques 
 
3 Methodology  
3.1 Case study 

The case under study involves a manufacturing 
company specializing in producing wiring harnesses for 
numerous OEMs. This company extensively sources 
millions of components from global suppliers, operating 
across varied production scales, encompassing both high 
and low volumes. While individual disruptions, delays, and 
quality issues remain relatively minor, their cumulative 
impact can escalate, creating a substantial number of 

disruptions that demand immediate handling to prevent 
further propagation. 

Consequently, the objective is to establish a predictive 
system capable of preemptively categorizing potential 
disruptions and risk before their occurrence. This will 
facilitate proactive measures for risk mitigation and robust 
contingency planning, ensuring a proactive and resilient 
approach to managing and averting potential disruptions. 

The focus of our investigation is on pinpointing 
suppliers most prone to SC vulnerabilities, specifically in 
terms of delivering bad product quality. As quality issues 
is a critical area for research. Understanding the impact of 
these quality issues and their correlation with SC 
disruptions is key to mitigating risks and ensuring a 
smoother operational flow. Our principal objective is to 
identify potential failures originating from suppliers 
impacted by vulnerabilities, thereby causing disruptions 
within the SC. We seek to estimate the overall costs 
associated with inferior-quality products resulting from 
various disruptions, which include line stoppages, delivery 
delays, as well as addressing customer concerns and 
dissatisfaction. 

In the pursuit of addressing the complex challenges 
outlined in our case study, our methodology, in Figure 1, 
unfolds through a series of designed steps, each 
contributing to our overarching objective of establishing a 
predictive system for preemptively categorizing potential 
disruptions and risks in the SC. 
 
3.2 Data collection and exploration 

To comprehend the nuances of disruptions, caused by 
quality issues within our manufacturing company, we 
initiated the process with extensive data collection. This 
involved sourcing historical data from the manufacturer's 
Enterprise Resource Planning (ERP) system, The data 
covers supplier quality performance concerning 314 of 
purchased products over a period of seven 
years,incorporating assessments from 429 suppliers across 
20 manufacturing plants worldwide. key variables within 
the dataset are outlined in Table 1, that comprising multiple 
columns containing information relevant to tracking and 
managing supplier issues. Additionally, each column is 
accompanied by a specific data format and description, 
providing insights into the type of information available 
within the dataset. 

The dataset comprises records of 20,000 quality issues 
associated with distinct products. Among these issues, 
53.5% were attributed to suppliers responsible for non-
conforming products, 11.46% were linked to suppliers.who 
refused to acknowledge failures, and 35.04% of issues 
were communicated to suppliers as information for them to 
consider and rectify in their future deliveries. 
 
3.3 Initial feature and algorithm selection 

Identifying suppliers most prone to vulnerabilities, 
especially in delivering subpar product quality, was the 
focal point of our investigation. To translate this focus into 
actionable insights, we meticulously selected features that 
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offer critical information about supplier performance, such 
as supplier name, failure description, issue gravity, number 
of issue per gravity, and total cost. To elaborate further on 
our approach, we utilized RF Classifier, SVM, KNN, and 
ANN for classification tasks, distinguishing and predicting 
failure descriptions. These models, renowned for their 
robustness, were instrumental in leveraging historical data 
to foresee potential disruptions. Concurrently, for 
regression tasks, specifically predicting the number of 
issues and total cost, we employed RF Regressor, SVR, 
Linear Regression and ANN.  

As summarized in Table 2. These regression models 
excel in estimating numerical values, providing valuable 

insights into the expected quantity of failures and 
associated costs. 
 
3.4 Performance metric definition 

The incorporation of performance metrics is essential 
in evaluating the effectiveness of our models in addressing 
supplier quality concerns. In line with the case study's 
overarching goal of estimating failures, their numbers, and 
associated total costs, we have defined key performance 
metrics. These metrics (1), (2), (3), (4), (5), provide a 
comprehensive assessment of the models' predictive 
capabilities and their ability to contribute meaningful 
insights to SCM. 

 
Table 1 Overview of the data  

  Data Format Description 
ID number Alphanumeric Unique code describing supplier issue 
Final Customer Text Short description of the final customer 
Supplier PN Alphanumeric Unique supplier product number 
Supplier Name Text Short description of the supplier’s name 
Failure Description Text Short description of the failure 
Issue Gravity Alphanumeric Indicating where the product is detected as non-conform. 

It has three possible values: 
• C1: At the final customer 
• C2: At the manufacturer's plant production process 
• C3: At the manufacturer's plant in their incoming inspection  

Number of issue per gravity Number How many issues from same failure were occurred 
Supplier Acceptance Binary Indicating the acceptance of the supplier for the claimed failure (1 for 

"Accepted," 0 for "Not accepted") 
Plant Location Number Number Number of the plant where the failure was detected 
City Text Representing the city where the plant is located 
NOK parts number Number Indicating the number of non-conform parts 
Creation date Date When the failure was detected in the manufacturer’s plant 
NOK parts replacement Binary Representing whether the supplier ensured the replacement of non-

conform parts (1 for "Yes," 0 for "No"). 
Replacement time Number Indicating how long the replacement process takes 
Recurrent Issue Binary Did the issue have been occurred before (1 for "recurrent," 0 for "Not 

recurrent"). 
Total Cost (Euros) Number Representing the disruption cost incurred by the failure 
Invoice Payment Binary Indicating if the supplier takes charge of the invoice payment (1 for "Yes," 

0 for "No") 
Response time Binary Indicating if the payment is made in time or not (1 for "Yes," 0 for "No"). 
Additional Time Number Indicating how long the payment takes in delay. 

 
Table 2 ML and DL algorithms selection for regression and classification tasks 

Machine Learning /Deep 
learning Algorithms 

Random 
Forest 
Classifier  
 

Random 
Forest 
Regressor 

Support 
Vector 
Machine 
(SVM) 

Support 
Vector 
Regression 
(SVR) 

Linear 
Regression 

KNN ANN 

Regression (for Number of 
issue prediction and Total 
cost) 

 x  x x  x 

Classification (for Failure 
prediction) 

x  x   x x 

Precision (1): reflects the accuracy of positive 
predictions made by the model. In the context of our case 

study, precision signifies the proportion of correctly 
identified supplier failures out of all predicted failures. 
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Recall (2): also known as sensitivity measures the 

model's ability to identify all actual supplier failures. It 
highlights the proportion of correctly identified failures out 
of the total actual failures.   
 

Recall (Sensitivity)	  
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    (2) 

 
F1-score (3): is the harmonic mean of precision and 

recall. It provides a balanced assessment of a model's 
performance by considering both false positives and false 
negatives.  
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Accuracy (4): represents the overall correctness of the 

model's predictions, defined as the ratio of correct 
predictions to the total number of predictions. 
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Mean Squared Error (MSE) (5) metric for regression 

tasks : It measures the average squared difference between 
the predicted values (.� and the actual (�. 
 

MSE	
2

"
 ∑   (.� 4 (�$²"

�62                        (5) 

3.5 Data pre-processing   
After gaining insights into the dataset, our next step 

involved refining it for our predictive models. Initially, we 
converted categorical data into a numerical format, a 
prerequisite for ML and DL models that commonly process 
numerical input. One-Hot-Encoding, a widely established 
technique, was employed for this purpose. Incorporating 
dates as input features in a supervised learning framework 
involves training the prediction model on historical dates 
along with other relevant features depending on the target 
variable that we want to predict. In an effort to optimize the 
model's effectiveness, interpretability, and efficiency, we 
carefully chose a subset of features from our dataset. The 
identification of features required an understanding of the 
influence, correlation, and connections between variables, 
offering insights into their interdependencies and potential 
impact on the target variables. To mitigate 
interdependencies among our input features, certain 
variables were excluded. 

Furthermore, and in order to enhance the performance 
of ML and DL models by ensuring the data is well-suited 
for analysis and model training. In summary, we chose the 
following independent variables to serve as input features 
for our models: Number of issue per gravity, Total cost, 
Issue gravity, Failure description, and Creation date. 

The pair plot highlights a robust positive correlation 
among number of issue per gravity, failure description, and 
total cost, suggesting that a greater frequency of reported 
issues in failure description (as depicted in Figure 2) is 
linked to higher total costs.  

 

 
Figure 2 Analysis of issue frequency, failure description and total cost 
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Furthermore, the correlation observed between number 
of issue per gravity and total cost underscores that the 
gravity type occurring more frequently is associated with 
higher cost implications. This finding suggests that issues 
of this gravity type, identified by the end customer, are 
more likely to result in cost generation.      Notably, these 
customer-detected failures, although occurring less 
frequently than C2-type issues, exhibit a heightened 
propensity to generate costs. 

Following the specification of input features for various 
prediction models, the data preparation phase was 
successfully concluded. After understanding the available 
data and outlining the features for our models, we 
established an experimental plan consisted of two stages. 
The first stage focused on a classification task for 
predicting supplier failures description, where we can 
answer RQ 1. The second stage is focused on regression 
tasks for predicting the number of issues and total cost 
prediction and thus is designed to answer RQ 2 and RQ 3. 
 
4 Result and discussion  

This section unveils the findings of our investigation 
into predicting failure descriptions, a critical task for 
anticipating and managing potential disruptions in the SC. 
The accurate classification of failure scenarios holds the 
key to informed decision-making and proactive risk 
mitigation in SC operations. Our study delves into the 
performance of diverse ML and DL models, shedding light 
on their effectiveness in enhancing predictive capabilities. 
 
4.1 Models optimization and algorithms 

performances analysis 
4.1.1 Classification models optimization 

After conducting an in-depth analysis, we explored 
hyperparameter tuning and feature engineering for both the 
KNN and SVM models. This rigorous exploration aimed 
to fine-tune the models and enhance their predictive 
capabilities.  

Grid search is used to find the optimal 
hyperparameters, which are then used to train a final SVM 
model. The optimal settings for "C" (regularization 
parameter) and "kernel" are used to instantiate the SVM 
model. This improved SVM model is then used to generate 
predictions for cross-validation. By using an iterative 
procedure, the model's prediction accuracy and 
generalization ability are improved by training it with the 
most efficient hyperparameters found by grid search. As a 
result of these efforts in Table 3, the SVM model achieved 
a significant accuracy of 75%, showcasing the impact of 
parameter optimization.  

As well, with hyperparameter optimization, the KNN 
model showed progress, with an accuracy of 60%. To 
optimize the KNN model, grid search is used, which entails 
examining a parameter grid that includes 'n_neighbors,' 
which is the number of neighbors taken into account for 
classification. Furthermore, a variety of weight functions 

('weights') and distance metrics ('p') are methodically 
examined. Finding the ideal hyperparameter configuration 
to enhance classification accuracy is the goal of the grid 
search process. Five-fold cross-validation is used in 
conjunction with this optimization procedure to ensure 
strong assessment and reduce overfitting. 

The combination of hyperparameter tuning and feature 
engineering contributes to a more refined and effective 
modeling approach, addressing specific characteristics of 
the dataset and improving overall models performance. 

As well, we refined the neural network architecture 
employed in this task,this architecture  consists of two 
hidden layers with ReLU activation functions, followed by 
dropout layers with rates of 0.5 and 0.3. The Adam 
optimizer is employed with default parameters, and 
training occurs over 100 epochs with a batch size of 
32,strikes a balance between complexity and 
generalization performance, validated through empirical 
experimentation, providing us with an accuracy of 33%. 

Applying advanced hyperparameter tuning techniques, 
we meticulously fine-tuned the RF to achieve superior 
performance. The initial RF model yielded an accuracy of 
62%. Subsequently, we conducted an exhaustive 
hyperparameter search using GridSearchCV, exploring a 
parameter grid. This process resulted in a refined RF model 
with an enhanced accuracy of 64%, illustrating the 
significance of hyperparameter optimization. 

In addition, we delved into the potential of Gradient 
Boosting to further boost model performance.  

To find the ideal set of hyperparameters from the 
specified parameter distributions, RandomizedSearchCV 
is utilized. random sampling from the parameter 
distributions is done ten times.every possible combination 
of hyperparameters is assessed using 5-fold cross-
validation. 

The Gradient Boosting classifier exhibited exceptional 
accuracy, reaching an impressive 86%. This success 
highlights the effectiveness of Gradient Boosting in 
capturing intricate patterns within the data and maximizing 
predictive accuracy. 

These detailed efforts in hyperparameter tuning, 
utilizing GridSearchCV for the RF model and configuring 
Gradient Boosting, showcase our commitment to 
optimizing model performance and uncovering the most 
effective configurations for the given classification task. 

After the model is fitted, we carry out the validation set 
evaluation and cross-validation.Understanding the model's 
expected performance in real-world with unseen data. 
Using a 5-fold cross-validation, the cross-validation scores 
vary from 85.38% to 87.26%, with an accuracy of 86.39% 
on average and a standard deviation of 0.77%. The efficacy 
of the Gradient Boosting classifier in forecasting the failure 
descriptions within the dataset is exhibited by these 
outcomes.The model has strong performance on the 
validation set as well as in cross-validation, suggesting that 
it can generalize well to previously unseen data from the 
same distribution as the training data.  
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Table 3 Model evaluation metrics for classification task related to failures prediction  
Model Accuracy Macro 

Avg 
Precision 

Macro 
Avg 
Recall 

Macro 
Avg 
F1-
Score 

Weighted 
Avg 
Precision 

Weighted 
Avg 
Recall 

Weighted 
Avg F1-
Score 

KNN 60% 0.21 0.23 0.21 0.52 0.60 0.55 
SVM 75% 0.35 0.35 0.34 0.75 0.75 0.75 
ANN 33% 0.14 0.14 0.12 0.29 0.33 0.28 
RF classifier 62% 0.26 0.30 0.27 0.54 0.62 0.56 
RF classifier with 
GridSearchCV 

64% 0.28 0.32 0.28 0.55 0.64 0.58 

RF classifier with Gradient 
Boosting classifier 

86% 0.58 0.59 0.58 0.78 0.82 0.79 

Table 4 Model evaluation metrics for regression task related to number of failures prediction  
Regression (Metrics/Models) ANN Linear Regression Random 

Forest 
Regressor 

SVR 

MSE 'Number of Failures' 2.681293342490944e-16 
 

1.87e-33 
 

0.0001 0.05 
 

 
Table 5 Model evaluation metrics for regression task related to total cost prediction  

Regression (Metrics/Models) Linear Regression Random Forest 
Regressor 

ANN SVR 

MSE 'Total Cost' 1.56e-28 0.023 0.17 
 

0.88 

 
In addition, to assessing the performance metrics of our 

models, we conducted an in-depth analysis of feature 
importance to identify the input features that significantly 
influence the model's output. This exploration provides 
valuable insights into the variables driving the predictive 
capabilities of our models. 

The results of our feature importance analysis 
underscore the pivotal role of specific variables in the 
prediction of failure descriptions. Notably, supplier name 
and failure description emerged as features with higher 
importance compared to others in the models for the initial 
stage. These variables exert a substantial influence on the 
accurate prediction of the failure description, aligning with 
the nuances of our SC disruption prediction task. 

The identification of influential features enhances our 
understanding of the underlying dynamics of failure 
prediction. These insights can inform decision-makers in 
the SC, enabling them to focus on key variable for 
improved risk assessment and proactive mitigation 
strategies. 
 
4.1.2 Regression models performance analysis 

This part presents a detailed analysis of the 
performance metrics for the regression models employed 
in predicting the number of failures and total cost 
respectively in Table 4 and Table 5. The models considered 
include Linear Regression, SVR, RF Regressor, and ANN 
evaluated through MSE metric. 

In our quest to predict the number of failures, Our 
analysis reveals noteworthy insights into the performance 
of various regression models. Linear Regression and the 

ANN stand out with unprecedented in conclusion, our 
research, which delves into the predictive capabilities of 
ML and DL models, significantly contributes to the 
proactive prevention of SC disruptions and the 
enhancement of supplier performance. By focusing on 
specific prediction questions, our study empowers 
decision-makers with valuable insights for issues 
prevention, risk control, and supplier management. The 
integration of predictive analytics and innovative 
methodologies, as explored in our research, empowers 
organizations to navigate the complexities of the modern 
SC landscape with heightened efficiency and effectiveness. 
This convergence of SCM with advanced technologies 
establishes a foundation for a more resilient and adaptive 
future in SC operations. By leveraging predictive 
capabilities, organizations can proactively respond to 
emerging challenges and uncertainties, ensuring a robust 
and future-ready SC. 

However, it's essential to acknowledge the limitations 
of our study. Future research could explore additional 
industry-specific datasets and address potential biases in 
the selected data. Additionally, the ethical considerations 
of deploying advanced technologies in SCM, such as data 
privacy and algorithmic transparency, warrant continued 
attention as organizations embrace these predictive 
capabilities,predictive accuracy, boasting MSE values of 
1.87e-33 and 2.681293342490944e-16, respectively. 
These exceptionally low errors underscore their 
remarkable precision in capturing the underlying patterns 
in the data. SVR demonstrates a commendable 
performance, striking a balance with an MSE of 0.05, 
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indicative of solid predictive capabilities. Notably, the RF 
Regressor emerges as the top performer, showcasing an 
exceptionally low MSE of 0.0001. This outstanding result 
underscores its prowess in capturing intricate relationships 
within the data, making it a robust choice for regression 
tasks.  

Furthermore, our detailed investigation into feature 
significance for our selected models, particularly the RF 
Regressor, identified gravity issue and number of issues 
per gravity as key variables with notably elevated 
importance compared to others in the second-stage models. 
These findings emphasize the crucial roles of these 
variables in predicting the number of issues per gravity, 
highlighting their substantial importance in our SCM 
context. 

To predict the total cost, Linear Regression continues 
to demonstrate an exceptionally low MSE of 1.56e-28 for 
predicting total cost. This indicates very high accuracy and 
precision in its predictions. The ANN model has an MSE 
of 0.17, indicating acceptable performance. While higher 
than the MSE for Linear Regression. The RF Regressor has 
an MSE of 0.023, which is higher than Linear Regression 
but lower than the ANN. SVR has the highest MSE among 
the models, with a value of 0.88. This indicates a higher 
level of prediction error compared to the other models. 

[35] The authors employed a variety of regression 
models, including Simple Regression, Lasso Regression, 
Ridge Regression, Elastic Net, RF, Gradient Boosting 
Machine (GBM), and Neural Network, to predict the 
availability of products in the event of disruption. The 
results of their experiments showed that tree-based 
learning algorithms,RF and GBM in particular,performed 
better than other models in terms of test error. 

Overall,the type of data used and the features chosen 
for the study have an impact on the models' performance. 
Regression models can exhibit variability in their 
responses to distinct data sets and feature types.Neural 
networks can perform very well in scenarios with 
enormous datasets or sophisticated feature interactions 
because of their great degree of flexibility and ability to 
understand complex patterns in data. Nevertheless, they 
may be more prone to overfitting and need careful 
hyperparameter adjustments, particularly in cases when the 
dataset is noisy or tiny.In conclusion, elements including 
the type of data, the attributes of the features, and the 
intricacy of the underlying relationships all have an impact 
on the model selection and performance. 
 
5 Conclusions  

In summary, our research underscores the pivotal role 
that ML and DL models play in transforming SCM.By 
delving into the predictive capabilities of these models, we 
contribute significantly to the proactive prevention of 
disruptions in the SC and the overall improvement of 
supplier performance. 

Our study's value lies in its specific focus on prediction 
questions, providing decision-makers with actionable 
insights for preventing issues, controlling risks, and 

managing suppliers more effectively. Through the 
integration of predictive analytics and innovative 
methodologies, as explored in our research, automotive 
organizations gain the tools necessary to navigate the 
intricate landscape of modern SCs with heightened 
efficiency. 

This convergence of SCM with advanced technologies 
establishes a robust foundation for a more resilient and 
adaptive future in SC operations. leveraging predictive 
capabilities empowers organizations to proactively 
respond to emerging challenges and uncertainties, ensuring 
a SC that is both robust and future-ready. 

The specific automotive data provides several 
strengths, it allows for a deep understanding of the nuances 
and intricacies within the automotive SC. The models 
developed based on this data are likely to be highly tailored 
to the specific challenges and dynamics of the automotive 
industry. This specialization can lead to more accurate 
predictions and insights, particularly for disruptions related 
to non-quality products from suppliers. Despite its 
resilience, the dynamics, challenges and variables 
influencing disruptions in the automotive SC may be very 
different from those in other sectors.Compared to 
businesses like electronics or pharmaceuticals, the 
automobile sector could have different procurement 
procedures, product lifecycles, or regulatory needs. As a 
result, models created using data from the automobile 
industry might not be directly applicable or accurate in 
other SC scenarios or industries. It's essential to validate 
the models developed using data from different industries 
or SC contexts. This validation process may involve testing 
the models with data from companies in other sectors and 
making necessary adaptations or adjustments to ensure 
their effectiveness and accuracy. Furthermore,the research 
focus on predicting disruptions from non-quality products 
while excluding  other types of disruptions such as 
logistical issues and geopolitical events. Logistical issues 
could involve problems with transportation, warehousing, 
or distribution, while geopolitical events could include 
trade disputes, political instability, or natural disasters 
impacting and changing SC dynamics that can be 
influenced by a wide range of factors the assumption of 
stationarity may no longer hold true.Changes in SC 
dynamics can alter the underlying patterns and 
relationships in the data used for modeling and 
forecasting.For instance,supplier performance may 
change, or new SC partners may be introduced. These 
changes can affect the model’s accuracy and the statistical 
properties of the data, making it more challenging to 
accurately predict future outcomes using traditional 
stationary models. 
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